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~���1 a. Since ker f is a submodule ofM , `(ker f) ≤ `(M) <∞. Moreover,

by im f 'M/ ker f one has `(im f) = `(M)− `(ker f) <∞.

b. Assume that f is injective. Since `(M) < ∞, in particular M is

artinian. Then the following descendent chain stabilizes:

im f ⊇ im f2 ⊇ . . . ,

that is, there exists t ≥ 1 such that im f t = im f t+1. Let n ∈ M
and let m ∈M such that f t(n) = f t+1(m). Then

f t(n)− f t(f(m)) = 0

=⇒f t(n− f(m)) = 0

f injective
=⇒ n = f(m)

=⇒n ∈ im f.

If f is surjective, consider the analogous ascendent chain

ker f ⊆ ker f2 ⊆ . . .

and use the fact that M is noetherian.

c. Let n as above so that im fn = im fm for all m ≥ n. Let m ∈M
and m′ ∈M such that fn+n(m′) = fn(m). Then

m = (m− fn(m′)) + fn(m′)

and

fn(m− fn(m′)) = fn(m)− fn+n(m′) = 0,

so m− fn(m′) ∈ ker fn. Hence

M = ker fn + im fn.

~���2 Consider the chains of exercise 1 and pick p and q minimal such

that they stabilize (M is both noetherian and artinian since of

�nite length).
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Assume p ≥ q, so imup = imuq and kerup ⊆ keruq. By exercise

1.a

`(M) = `(kerup) + `(imup)

= `(keruq) + `(imuq),

which implies

`(kerup) = `(keruq)

and so by the properties of the length, kerup = keruq. But p is

minimal, so p ≤ q, then p = q.

c.d. By exercise 1.c we have M = kerup+imup. Let x ∈ kerup∩imup

and let y such that x = up(y) and so up(x) = u2p(y) = 0. Then

y ∈ keru2p = kerup, so x = up(y) = 0.~���3 Let n > 1; then since Q is divisible nQ = Q, but there is no element a
in nZ such that (1 + a)Q = 0.~���4 Let I = (a1, . . . , an). Since I = II, by Nakayama's Lemma there is

an element a ∈ I such that (1 + a)I = 0. In particular for every

i = 1, . . . , n, (1 + a)ai = 0, so ai = −aai ∈ (a), which implies

I = (a).

Now, since I = I2, there is a u ∈ A× such that a = ua2. Choose

e := ua, then I = (e) and e2 = u2a2 = u2u−1a = ua = e.~���5 a. Let Φ : M −→
∏

m⊆A maximal
Mm. First of all, note that if M is a

simple module (i.e. `(M) = 1), say M ' A/m for some maximal

ideal m of A, then Mm ' A/m, since A/m is a �eld. Moreover, if

m′ 6= m, then

Mm′ ' (A/m)m′ ' Am′/mm′ = 0,

since m * m′. In particular, if m′ and m′′ are distinct maximal

ideals, then (Mm′)m′′ = 0.
Now, let n := `(M) and pick a decomposition series

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0.

By localizing at m we get

Mm = (M0)m ⊃ (M1)m ⊃ · · · ⊃ (Mn)m = 0.

The quotients Mi/Mi+1 are simple, so by the above remarks

(Mi/Mi+1)m =

{
Mi/Mi+1 if m = (0 :A Mi/Mi+1)

0 otherwise.
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From this, we see that Mm has a decomposition series correspond-

ing to the subseries of the one for M , obtained by keeping only

those (Mi)m such that Mi/Mi+1 ' A/m. Also, if m′ 6= m′′, then
(Mm′)m′′ = 0.
Consider now a maximal ideal m′ and the localization of Φ:

Φm′ : Mm′ −→
∏

m⊆A maximal

(Mm)m′ = (Mm′)m′ = Mm′ .

Then Φm′ = idMm′ for every maximal ideal m′. In particular Φm′

is an isomorphism of Am′-modules for every maximal ideal m′; but
the localization is a �at module, so the above implies that Φ is

an isomorphism of A-modules (slogan: "being an isomorphism is

local property").

b. Since A is artinian, it has �nite length, and there are only �nitely

many maximal ideals, so by part a. we get an isomorphism of

A-modules

Φ : A
'−→

∏
m⊆A maximal

Am
A-mod.'

⊕
m⊆A maximal

Am.

Since each map A→ Am is a morphism of rings, the isomorphism

Φ is actually an isomorphism of rings.


