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Commutative Algebra

@ a. Since ker f is a submodule of M, ¢(ker f) < ¢(M) < co. Moreover,
by im f ~ M/ ker f one has £(im f) = ¢(M) — ¢(ker f) < oo.

b. Assume that f is injective. Since (M) < oo, in particular M is
artinian. Then the following descendent chain stabilizes:

imf2Oimf?D>...,

that is, there exists ¢ > 1 such that im f! = im f**!. Let n € M
and let m € M such that fi(n) = fi*1(m). Then

f m_]ectlven _ f(m
=—n € im f.
If f is surjective, consider the analogous ascendent chain

ker f C ker f2 C ...

and use the fact that M is noetherian.

c. Let n as above so that im f* =im f™ for allm >n. Let m € M
and m’ € M such that f"*"(m’) = f"(m). Then

m = (m — "(m')) + ()

and
frm — fr(m')) = f*(m) — f*"(m') =0,

so m— f"(m) € ker f™. Hence
M = ker f™ +im f".

Consider the chains of exercise 1 and pick p and ¢ minimal such
that they stabilize (M is both noetherian and artinian since of
finite length).



Assume p > ¢, so imuP = imu? and ker uP C keru?. By exercise
la

(ker uP) + ¢(im uP)
(ker u?) 4 £(im u?),
which implies
l(ker uP) = l(ker u?)
and so by the properties of the length, ker u? = keru?. But p is
minimal, so p < ¢, then p = q.

d. By exercise 1.c we have M = ker u? +imu?. Let x € ker v’ Nim v?
and let y such that z = uP(y) and so uP(x) = u?’(y) = 0. Then
y € keru®? = keru?, so x = uP(y) = 0.

@ Let n > 1; then since Q is divisible nQ = Q, but there is no element a
in nZ such that (1 +a)Q = 0.

@ Let I = (a1,...,ay). Since I = II, by Nakayama’s Lemma there is
an element a € I such that (14 a)l = 0. In particular for every
i=1,...,n, (1+a)a; =0, so a; = —aa; € (a), which implies

I = (a).
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Now, since I = I?, there is a u € A* such that a = ua®. Choose

e := ua, then I = (e) and €? = v?a? = v?u~'a = ua = e.

@ a. Let @ : M — [ca masima Mm- First of all, note that if M is a
simple module (i.e. /(M) = 1), say M ~ A/m for some maximal
ideal m of A, then My, ~ A/m, since A/m is a field. Moreover, if
m’ # m, then

Mm/ ~ (A/m)m/ ~ Am//mm/ = 0,

since m ¢ m’. In particular, if m’ and m” are distinct maximal
ideals, then (M )m» = 0.
Now, let n := ¢(M) and pick a decomposition series

M=My>M D---DM,=0.
By localizing at m we get
My = (Mo)m O (M1)m D+ D (Mp)m = 0.
The quotients M; /M, are simple, so by the above remarks

Mi/Mi+1 ifm= (0 ‘A Mz/Mz—l—l)

0 otherwise.

(Mi/Mig1)m = {



From this, we see that M, has a decomposition series correspond-
ing to the subseries of the one for M, obtained by keeping only
those (M;)m such that M;/M; 11 ~ A/m. Also, if m’ # m”, then
(Mm’)m” = 0.

Consider now a maximal ideal m’ and the localization of ®:

‘bml : Mm’ — H (Mm)m’ = (Mm’)m’ = Mml.

mQA maximal

Then @ = idys_, for every maximal ideal m’. In particular @
is an isomorphism of A,/-modules for every maximal ideal m’; but
the localization is a flat module, so the above implies that ® is
an isomorphism of A-modules (slogan: "being an isomorphism is
local property").

. Since A is artinian, it has finite length, and there are only finitely
many maximal ideals, so by part a. we get an isomorphism of
A-modules

~ A-mod.
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Since each map A — A, is a morphism of rings, the isomorphism
® is actually an isomorphism of rings.



