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Abstract. Notes for preparation of the toy case for Eskin McMullen

In what follows, G = SL2(R), Γ = SL2(Z), K = SO2(R),

A =

{
at =

(
e−

t
2

e
t
2

)
; t ∈ R

}
,

U =

{
ut =

(
1 t

1

)
; t ∈ R

}
.

For the choice of Haar measures, we equip U ∼= R with the Lebesgue measure and
SO2(R) ∼= S1 with the spherical measure that assigns mesure 2π. Explicitly, this
measure is given by the formula∫

SO2(R)

f(k)dmSO2(R)(k) =

∫ 2π

0

f(kθ)dθ

for all f ∈ C
(
SO2(R)

)
, where kθ = ( cos θ − sin θ

sin θ cos θ
).

Lemma 1. R2 \ {0} ∼= U\G.

Proof. G y R2 \ {0} jointly continuously via g · v = vg−1, where we identify R2

with the space of 1× 2-matrices with entries in R (i.e. row-vectors). The action is
transitive and StabG(e2) = U . �

As a corollary we obtain the following disintegration formula for the Haar mea-
sure on SL2(R).

Corollary 1. The map on Cc(SL2(R)) given by

f 7→
∫
R2

∫
U

f(ug)dude2g

is a right-invariant functional on SL2(R) and thus induces a right-invariant Haar
measure on SL2(R).

Proof. This was shown (exchanging left for right actions) earlier. �

Remark 1. Every right Haar measure on G = SL2(R) is a left Haar measure.
This is shown as follows:

(1) Let m be any right Haar measure on G and let g ∈ G fixed. Define a measure
mg on G by mg(B) = m(gB). As left multiplication by g is a homeomor-
phism of G, mg is again a Borel measure which is finite on compacta and
does not vanish on non-empty open sets. Moreover right-invariance of m
yields mg(Bh) = m(gBh) = m(gB) = mg(B) for all h ∈ G and for all
Borel sets B. Thus mg is again a right Haar measure.
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(2) Uniqueness of the Haar measure up to positive scalar multiples implies that
there exists χ : G → (0,∞) such that for all g ∈ G holds mg = χ(g)m.
One checks that χ(gh) = χ(g)χ(h) for all g, h ∈ G. Indeed for any non-
empty open Borel set B in G we find χ(gh)m(B) = mgh(B) = mg(hB) =
χ(g)m(hB) = χ(g)mh(B) = χ(g)χ(h)m(B) and m(B) 6= 0 yields χ(gh) =
χ(g)χ(h).

(3) As (0,∞) is an abelian group, the commutator subgroup of G is contained
in the kernel of χ. But G is almost simple (i.e. has no infinite normal
subgroups) and as (0,∞) has non non-trivial finite subgroups, it follows
that χ(g) = 1 for all g ∈ G.

Instead of proving almost simplicity, we will show that the commutator
subgroup [G,G] ≤ G, i.e. the group generated by all elements of the form
ghg−1h−1 actually agrees with the full group G. To this end it suffices to
show that [G,G] contains all upper and lower unipotents. One calculates

usatu−sa−t = usu−e−ts = u(1−e−t)s ∈ [G,G]

and similarly for lower unipotents.
(4) As χ ≡ 1, it follows that mg = m for all g ∈ G and thus m is in fact

left-invariant. This proves the claim.

Lemma 2 (Iwasawa decomposition). Let g ∈ SL2(R), then there are unique k ∈ K,
a ∈ A, u ∈ U such that g = uak. We write k = k(g), a = a(g) and u = u(g). We
also denote by tg ∈ R the number defined by a(g) = atg .

Proof. Consider v = e2g. Then there exists a unique k ∈ SO2 such that vk = ‖v‖e2.
Choose t ∈ R such that vkat = e2. Then e2kat = e2 implies gkat = u for some
u ∈ U and thus g = ua−tk. Uniqueness follows from uniqueness of k, at and
right-cancellation in groups. �

Lemma 3 (KAK-decomposition). Let g ∈ SL2(R). Then there is a unique t and
there are k, l ∈ SO2(R) such that g = ka±tl. In fact, for every ε > 0 the set

Vε = K {at; |t| < ε}K (ε > 0)

is an open neighbourhood of the identity.

Proof. Let S ⊆ R2 \ {0} be a circle, then Sg is an ellipse. Let k ∈ SO2(R) sending
the major axis of the ellipse to the real line. Now choose t ∈ R such that Sgkat is
again a circle. As gkat sends one circle to another circle, it follows from linearity
that gkat sends circles to circles (i.e. is a linear transformation that preserves lengths
and thus in fact orthogonal). As det(gkat) = 1, it follows that gkat ∈ SO2(R).

It remains to show the uniqueness. Note that for g = kal holds S1g = S1al
and the latter is in fact independent of the choice of the decomposition of g. The
element a determines the ratio between the semi-minor axes, and thus is uniquely
defined by the image of S1 under g.

In order show that these sets form an open neighbourhood, look at the action
of SL2(R) on H and consider the set Vε · i. This is given by the (hyperbolic) ball
determined by the piece (e−ε, eε) · i around i – because K moves points in H along
the hyperbolic circle centered at i – and thus an open neighbourhood of i. As the
map G→ H, g 7→ g · i is a quotient map, the preimage given by Vε is an open subset
of G. �

Proposition 1. The set of primitive integer vectors in R2 is given by Γ · e2 =
e2Γ ∼= Γ/Γ∞, where Γ∞ = Γ ∩ U .

Proof. Let g = ( a bc d ) ∈ Γ, then ad− bc = 1 implies that c and d are coprime. Thus
e2g = ( cd ) is a primitive vector.
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Let v = (m,n) ∈ Z2 be a primitive vector. Then m,n are coprime and thus there
are a, b ∈ Z so that am + bn = 1. In particular g = ( b −a

m n ) ∈ Γ satisfies v = e2g.
It follows that the primitive vectors are contained in Γ · e2 and using the definition
of a group action, it follows that Γ acts transitively on the set of primitive vectors.

Finally StabΓ(e2) = StabG(e2) ∩ Γ = U ∩ Γ implies the claim. �

In order to prove the equidistribution of long horocycle orbits after twisting with
elements in SO2(R), we include the following elementary lemma.

Lemma 4. Let ϕ : (−∞, 0) → C be a function and a ∈ C. The following are
equivalent:

(1) For all ε > 0 there is some Tε ∈ (−∞, 0) such that for all t ≤ Tε holds
|ϕ(t)− a| < ε (i.e. ϕ(t)→ a as t→ −∞).

(2) For every sequence (tn)n∈N of negative numbers satisfying tn → −∞ holds
ϕ(tn)→ a as n→∞.

Proof. It is clear that the first item implies the second. In order to prove the
opposite implication, assume the first item is false, i.e. there is some ε > 0 such
that for all T < 0 there exists some t ≤ T with |ϕ(t) − a| ≥ ε. Choose t1 < −1
such that |ϕ(t) − a| ≥ ε. Assume that we have found 0 > t1 > . . . > tn such that
tk − tk−1 < −1 for all 1 < k ≤ n and |ϕ(tk) − a| ≥ ε for all 1 ≤ k ≤ n. By
assumption, there is some tn+1 < tn − 1 such that |ϕ(tn+1) − a| ≥ ε and proceed
inductively. The sequence (tn)n∈N satisfies tn → −∞ and ϕ(tn) 6→ a. �

Lemma 5. For t ∈ R let kt ∈ SO2(R) arbitrary. The sets ΓUa−tkt equidistribute
in Γ\G as t→ −∞ in the following sense. For all f ∈ Cc(Γ\G) holds∫ 1

0

f(Γusa−tkt)ds
t→−∞−→

∫
Γ/G

f(x)dx.

Proof. The motivation behind this is that ΓUa−t = Γa−tU and thus Γa−t has a
periodic U -orbit of volume e−t, because Γa−tus = Γa−t ⇐⇒ a−tusat = uets ∈ Γ.
The proof that the sets ΓUa−t equidistribute is a result attributed to Sarnak, but
can and in this course will be obtained by more elementary means via Margulis’
“banana” trick, which is the content of the talk preceding this one. It remains to
show that this result is not affected by translation of the orbit using elements in
SO2(R).

Using the preceding lemma, it suffices to show that for every sequence (tn)n∈N
and for every f ∈ Cc(Γ\G) we have∫ 1

0

f(Γusa−tnktn)ds→
∫

Γ/G

f(x)dx.

As SO2(R) is compact, every sequence contains a subsequence such that – keeping
the same indices – ktn → k ∈ SO2(R). We will write kn and an instead of ktn and
a−tn . Let now ε > 0 arbitrary. Using the triangle inequality, we have∣∣∣∣ ∫ 1

0

f(Γusankn)−
∫

Γ/G

f(x)dx

∣∣∣∣ ≤ ∣∣∣∣ ∫ 1

0

f(Γusankn)−
∫ 1

0

f(Γusank)

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

k · f(Γusan)−
∫

Γ/G

k−1 · f(x)dx

∣∣∣∣.
As f is uniformly continuous, there is some N1 ∈ N such that for all n ≥ N1 holds
|f(xkn)− f(xk)| < ε

2 for all x ∈ G/Γ. Note that k−1 · f ∈ Cc(X), so that as ΓUan
equidistributes in Γ\G, we find that there is some N2 ∈ N such that for all n ≥ N2
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we have ∣∣∣∣ ∫ 1

0

k−1 · f(Γusan)−
∫

Γ/G

k−1 · f(x)dx

∣∣∣∣ < ε

2
.

Setting N = max{N1, N2} shows that

n ≥ N =⇒
∣∣∣∣ ∫ 1

0

f(Γusankn)−
∫

Γ/G

f(x)dx

∣∣∣∣ < ε.

Now we invoke the argument from the class. Every subsequence contains a sub-
sequence which converges to

∫
Γ/G

f(x)dx, hence the whole sequence converges to

this limit and thus equidistribution follows. �

Corollary 2. Let gn be a sequence in SL2(R) such that a(gn) = a−tn for tn → −∞
(in particular Ugn →∞ in U\G). Then ΓUgn equidistributes in Γ\G.

Proof. ΓUgn = ΓUa−tnk(gn), hence it follows from the preceding statement. �

Proposition 2. In fact, the rate of equidistribution (for fixed f) is independent of
kt, i.e. for all ε > 0 there is a Tε < 0 with the right property for all kt ∈ SO2(R).

Proof. This is the same argument as before. If this was not true, there were an
ε > 0 such that for all T < 0 one could find some t ≤ T and some kt ∈ SO2(R)
such that ∣∣∣∣ ∫ 1

0

f(Γusa−tkt)dt−
∫
G/Γ

f(x)dx

∣∣∣∣ ≥ ε.
This contradicts the preceding discussion. �

For the calculations to follow, we will often employ the folding/unfolding trick.
Let H ≤ G be a closed subgroup such that Γ∞ ≤ H and assume that Γ∞H ⊆ Γ∞\G
is a closed subset. Assume furthermore that Γ∞\H admits an H-invariant measure
mΓ∞/H and that H\G admits a G-invariant measure mH/G. Then the map sending
f ∈ Cc(Γ∞\G) to∫

H/G

∫
Γ∞/H

f(Γ∞hg)dmΓ∞/H(Γ∞h)dmH/G(Hg)

is a well-defined G-invariant measure on Γ∞\G.
Indeed the main point is that the map which send f ∈ Cc(Γ∞\G) to Tf :

H\G→ C defined by

Tf(Hg) =

∫
Γ∞/H

f(Γ∞hg)dmΓ∞/H(Γ∞h)

is well-defined and satisfies Tf ∈ Cc(H\G). The fact that Tf is well-defined as
a function on H\G follows immediately from H-invariance of mΓ∞/H . Let g ∈ G
such that Tf(Hg) 6= 0, then there is some h ∈ H such that f(Γ∞hg) 6= 0 and thus
Γ∞hg ∈ supp (f), so that Hg ⊆ pH(supp f), where pH : Γ∞\G → H\G denotes
the canonical projection Γ∞g 7→ Hg. As the latter is continuous, it follows that
pH(supp f) is compact and thus suppTf is compact. It remains to show that Tf is
continuous. Indeed Let g, gn ∈ G such that Hgn → Hg, i.e. there is a sequence of
hn ∈ H such that hngn → g. Continuity of the projection implies that Γ∞hngn →
Γ∞g. As argued above, we have Tf(Hgn) = Tf(Hhngn). Define fn(Γ∞h) =
f(Γ∞hhngn), f∗(Γ∞h) = f(Γ∞hg) (for Γ∞h ∈ Γ∞\H). Then continuity of f
implies that fn → f∗ pointwise as n→∞. Moreover, continuity of the action Gy
Γ∞\G implies that there exists a compact neighbourhood V ⊆ G of the identity
and some N0 ∈ N such that for all n ≥ N0 holds supp fn ⊆ (supp f∗)V . Again by
continuity of the action, the subset (supp f∗)V is a compact subset of Γ∞\G and
thus the function ψ = ‖f‖∞1(supp f∗)V ∩Γ∞H is an integrable function on Γ∞\H
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satisfying |fn| ≤ ψ pointwise. Hence dominated convergence yields Tf(Hgn) →
Tf(Hg) as n→∞.

One can show that up to scalar multiples there is at most one G-invariant Borel
measure on Γ∞\G.

Corollary 3. Let mG be the Haar measure on G induced by the disintegration via
the action of G on R2 \{0} (cf. Corollary 1). Let mΓ/G be the G invariant measure
on Γ\G induced by mG. Let mΓ∞/U be the U -invariant measure on Γ∞\U induced
by the disintegration via the action of U on ΓU . Then∫
U/G

∫
Γ∞/U

f(Γ∞ug)dmΓ∞/U (Γ∞u)dmU/G(Ug) =

∫
Γ/G

∑
Γ∞γ∈Γ∞/Γ

f(Γ∞γg)dmΓ/G(Γg).

Proof. Using uniqueness (up to scalar multiples) of the SL2(R)-invariant mea-
sure on Γ∞\G, it suffices to find a subset of Γ∞\G which is given the same
non-zero measure by the two formulae. To this end (similarly to what happens
in the end), let E ⊆ Γ∞\G be the set E =

{
Γ∞usatk; |s| < 1

2 , t < 0
}

. Write

E′ =
{
usatk; |s| < 1

2 , t < 0
}

. The sets E and E′ are injective for the quotient maps
Γ∞g 7→ Γg and g 7→ Γg respectively. Hence we obtain∫

Γ/G

∑
Γ∞γ∈Γ∞/Γ

1E(Γ∞γg)dmΓ/G(Γg) =

∫
Γ/G

1ΓE′(Γg)dmΓ/G(Γg)

=

∫
U/G

∫
U

1E′(ug)dmU (u)dmU/G(Ug)

=

∫
U/G

∫
Γ∞/U

1E(ug)dmΓ∞/U (Γ∞u)dmU/G(Ug).

�

In the case at hand, we are given the two quotients as in the diagram

Γ∞\G

{{ ##

U\G Γ\G

instead of just one and our goal is to use the disintegration with respect to both of
these quotients. The count of interest is given by the number of points along the
Γ-orbit of U in the quotient space on the left, whereas the U -orbit of Γ is known
to equidistribute (when expanded by the geodesic flow).

Proposition 3 (Average counting result). Let r > 0 and define Fr : Γ\G→ R by

Fr(Γg) =
1

vol
(
Br(0)

) |e2Γg ∩Br(0)|.

Then

FrdmΓ/G
r→∞−→

? vol(Γ∞\U)

vol(Γ\G)
dmΓ/G

in the weak-star topology. Here mΓ/G is a finite (not necessarily probability) G-
invariant measure on Γ\G induced by mU/G and mU .

Proof. Let f ∈ Cc(Γ\G), then∫
Γ/G

f(x)Fr(x)dmΓ/G(x) =
1

vol
(
Br(0)

) ∫
Γ/G

f(Γg)
∑

Γ∞γ∈Γ∞/Γ

1Br(0)(e2γg)dΓg

=
1

vol
(
Br(0)

) ∫
Γ∞/G

f(Γg)1Br(0)(e2g)dΓ∞g
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=
1

vol
(
Br(0)

) ∫
U/G

∫
Γ∞/U

f(Γug)1Br(0)(e2g)dΓ∞udUg

=
1

vol
(
Br(0)

) ∫
U/G

1Br(0)(e2g)

∫
Γ∞/U

f(Γug)dΓ∞udUg

=
1

vol
(
Br(0)

) ∫
U/G

1Br(0)(e2g)

∫ 1

0

f(Γusg)dsdUg.

Let g ∈ G, then ‖e2g‖ = ‖e2a(g)‖ = e
tg
2 . Let ε > 0 and choose Tε > 0 so that∣∣∣∣ ∫ 1

0

f(Γusg)ds− 1

vol(Γ\G)

∫
Γ/G

f(x)dx

∣∣∣∣ < ε

whenever tg > Tε and let rε = e
Tε
2 . Then for ever r > rε we obtain

1

vol
(
Br(0)

) ∫
U/G

1Br(0)(e2g)

∫ 1

0

f(Γusg)dsdUg

=
1

vol
(
Br(0)

) ∫{
Ug;e

tg
2 <r

} ∫ 1

0

f(Γusg)dsdUg

=
1

vol
(
Br(0)

) ∫{
Ug;rε≤e

tg
2 <r

} ∫ 1

0

f(Γusg)dsdUg

+
1

vol
(
Br(0)

) ∫{
Ug;e

tg
2 <rε

} ∫ 1

0

f(Γusg)dsdUg.

By choice of rε, the first integral satisfies

1

vol
(
Br(0)

) ∫{
Ug;rε≤e

tg
2 <r

} ∫ 1

0

f(Γusg)dsdUg

≈
vol
(
Br(0)

)
− vol

(
Brε(0)

)
vol
(
Br(0)

) (
1

vol(Γ\G)

∫
Γ/G

f(x)dx+ ε

)
r→∞−→ vol(Γ∞\U)

vol(Γ\G)

(∫
Γ/G

f(x)dx+ ε

)
.

The second integral is bounded by∣∣∣∣ 1

vol
(
Br(0)

) ∫{
Ug;e

tg
2 <rε

} ∫ 1

0

f(Γusg)dsdUg

∣∣∣∣ ≤ vol(Brε(0)
)

vol
(
Br(0)

) ‖f‖∞ r→∞−→ 0.

As ε was arbitrary, this proves the claim. �

It remains to derive a counting statement from the averaged counting obtained
above. Note the upcoming choice of the radii which corresponds to the requirement
that the “balls” under consideration ought to be well-rounded.

Proposition 4. Given r ∈ R, we define Br = Ber (0). Then

1

vol(Br)
|Γ · e2 ∩Br|

r→∞−→ vol(Γ∞\U)

vol(Γ\G)
=

3

π2
.

Proof. Note that Γ · e2 = e2Γ by definition of the action G y R2. Let ε > 0

be arbitrary and choose δ > 0 such that vol(Br+δ)
vol(Br) < 1 + ε for all r ≥ 1. Indeed

vol(Br+δ) = vol(Br)e
2δ, so that any δ > 0 satisfying δ < log(1+ε)

2 will do. There is
some symmetric, open neighbourhood V ⊆ G of the identity, such that BrV ⊆ Br+δ
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for all r ≥ 1. To this end we use the discussion of the KAK-decomposition for
SL2(R) and choose as an open neighbourhood the set

V = K {at; |t| < 2δ}K.
For any g = katl ∈ V one calculates

‖vg‖ = ‖vkat‖ ≤ e
|t|
2 ‖v‖ < eδ‖v‖.

Hence V has the desired properties.
Now let g ∈ V arbitrary, then

Fr+δ(gΓ) =
1

vol(Br+δ)
|e2Γg ∩Br+δ| =

1

vol(Br+δ)
|e2Γ ∩Br+δg−1|

≥ 1

vol(Br+δ)
|e2Γ ∩Br| >

1

1 + ε

1

vol(Br)
|e2Γ ∩Br|

=
1

1 + ε
Fr(Γ)

If now ϕ ∈ Cc(Γ\G) is non-negative, has integral 1, support contained in ΓV (which
is an open neighbourhood of Γ) and does not vanish at Γ, then the above implies

Fr(Γ) ≤ (1 + ε)

∫
Γ/G

Fr+δ(x)ϕ(x)dx
r→∞−→ (1 + ε)

vol(Γ∞\U)

vol(Γ\G)
,

and hence we obtain

lim sup
r→∞

1

vol(Br)
|e2Γ ∩Br| ≤

vol(Γ∞\U)

vol(Γ\G)
.

On the other hand the same argument yields that for all g ∈ V and r > 1 + δ we
have

Fr(Γ) =
1

vol(Br)
|e2Γ ∩Br| ≥

1

vol(Br)
|e2Γ ∩Br−δg−1|

=
1

vol(Br)
|e2Γg ∩Br−δ| >

1

1 + ε
Fr−δ(Γg)

and thus

Fr(Γ) ≥ 1

1 + ε

∫
Γ/G

Fr−δ(x)ϕ(x)dx
r→∞−→ 1

1 + ε

vol(Γ∞\U)

vol(Γ\G)

and as ε was arbitrary, the claim follows. �

Lemma 6. For our choice of normalization of the Haar measure, we have

vol(Γ
∖
G) =

π2

3
.

Proof. We combine two disintegration formulae. First we recall that SL2(R) acts
transitively on H by Moebius transformations with StabSL2(R)(i) = SO2(R). Fur-

thermore the hyperbolic area measure dmH = 1
y2 dxdy is preserved by the action of

SL2(R). As discussed in an earlier talk, the functional given by sending f ∈ Cc(G)
to the number

Λ1(f) =

∫
H

∫
SO2(R)

f(gk)dmSO2(R)(k)dmH(g · i)

defines a Haar measure on SL2(R). In particular, uniqueness of the Haar measure
up to multiplicative constants implies that there is some C > 0 such that for all
f ∈ Cc(G) holds

Λ(f1) = C

∫
U/G

∫
U

f(ug)dmU (u)dmR2(Ug).
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The above equality applies to simple functions as is usually discussed in measure
theory.

G

}} !!

G/K U\G
We will fix a fundamental domain F for Γ/G and calculate Λ1(1F ), which will be
relatively easy. Next we fix some appropriate function f ∈ L1(G) and calculate
both Λ1(f) and

Λ2(f) =

∫
U/G

∫
U

f(ug)dudUg

for some function whose Haar integral does not vanish. In particular, Λ1(f)Λ2(f) 6=
0 and thus C = Λ1(f)

Λ2(f) . In particular we obtain that for our choice of the Haar

measure holds

vol(Γ
∖
G) =

Λ2(f)

Λ1(f)
Λ1(1F ).

First of all, we recall that the set

F = T 1
{
z ∈ H; |z| ≥ 1,<(z) ∈ [− 1

2 ,
1
2 ]
}

=
{
usatk; s ∈ [− 1

2 ,
1
2 ], e−t ≥

√
1− s2

}
=
{
usatk; t ∈ (−∞, 0], s ∈ [− 1

2 ,
1
2 ]
}

t
{
usatk; t ∈ [0,− log(

√
3

2 )), |s| ∈ [
√

1− e−t, 1
2 ]
}

is (up to a set of zero measure) a fundamental domain for Γ\G.

Claim 1. The map

gSO2(R) = z 7→
∫

SO2(R)

1F (gk)dmK(k)

is identiacal to 2π times the indicator function of F =
{
z ∈ H; |z| ≥ 1,<(z) ∈ [− 1

2 ,
1
2 ]
}

.

Indeed, by definition the set F is invariant under SO2(R) on the right. Hence
1F (gk) = 1F (g) and thus the claim follows easily. Hence in order to calculate the
volume of Γ\G with respect to the measure induced by Λ1, it suffices to calculate
mH(F). One obtains

mH(F) =

∫ 1
2

− 1
2

∫ ∞
√

1−x2

1

y2
dydx =

∫ 1
2

− 1
2

1√
1− x2

dx = 2 arcsin( 1
2 )

and thus Λ1(F ) = 4π arcsin( 1
2 ).

On the other hand, we know that the set

E = T 1
{
z ∈ H;<(z) ∈ [0, 1

2 ],=(z) ≥ 1
}

≡
{
usatk; s ∈ [0, 1

2 ], t ≤ 0
}

is injective and contains an open subset of SL2(R). We calculate the measure of E
in both ways. First of all, one obtains

Λ1(1E) = 2π

∫ 1
2

0

∫ ∞
1

1

y2
dydx = π,

and on the other hand one obtains

Λ2(1E−1) =
1

2
vol(B1(0)) =

π

2
,
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so that we obtain C = 2. Next we note that

arcsin( 1
2 ) = arcsin(sin(π6 )) = π

6 ,

and thus follows

vol(Γ
∖
G) = Λ2(1F ) =

1

2
Λ1(1F ) =

π2

3
= 2ζ(2).

�
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