COUNTING PRIMITIVE INTEGER VECTORS USING
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ABSTRACT. Notes for preparation of the toy case for Eskin McMullen

In what fOHOWS, G = SLQ(R), I'= SLQ(Z)7 K = SOQ(R),
A= { <6’2 t>;t€R},
ez
U:{ut: (1 i);teR}.

For the choice of Haar measures, we equip U = R with the Lebesgue measure and
SO5(R) = S! with the spherical measure that assigns mesure 27. Explicitly, this
measure is given by the formula

27

/ () dmso,@y (k) = | f(ke)dd
SOz (R)

0

for all f € C(SO5(R)), where kg = (039 ~sinf ),

sinf cos6
Lemma 1. R?\ {0} 2 U\G.

Proof. G ~ R?\ {0} jointly continuously via g -v = vg™!, where we identify R?

with the space of 1 x 2-matrices with entries in R (i.e. row-vectors). The action is
transitive and Stabg(ez) = U. O

As a corollary we obtain the following disintegration formula for the Haar mea-
sure on SLy(R).

Corollary 1. The map on C.(SLa(R)) given by

f»—)/Rz/fugdudegg

is a right-invariant functional on SLa(R) and thus induces a right-invariant Haar
measure on SLa(R).

Proof. This was shown (exchanging left for right actions) earlier. O

Remark 1. Every right Haar measure on G = SLa(R) is a left Haar measure.
This is shown as follows:

(1) Letm be any right Haar measure on G and let g € G fized. Define a measure
mg on G by my(B) = m(gB). As left multiplication by g is a homeomor-
phism of G, my is again a Borel measure which is finite on compacta and
does not vanish on non-empty open sets. Moreover right-invariance of m
yields mg(Bh) = m(gBh) = m(9B) = mgy(B) for all h € G and for all
Borel sets B. Thus mg is again a right Haar measure.
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(2) Uniqueness of the Haar measure up to positive scalar multiples implies that
there exists x : G — (0,00) such that for all g € G holds mgy = x(g)m.
One checks that x(gh) = x(g9)x(h) for all g,h € G. Indeed for any non-
empty open Borel set B in G we find x(gh)m(B) = mgn(B) = mg(hB) =
x(g)m(hB) = x(9)mn(B) = x(g9)x(h)m(B) and m(B) # 0 yields x(gh) =
x(9)x(h).

(3) As (0,00) is an abelian group, the commutator subgroup of G is contained
in the kernel of x. But G is almost simple (i.e. has no infinite normal
subgroups) and as (0,00) has non non-trivial finite subgroups, it follows
that x(g) =1 for all g € G.

Instead of proving almost simplicity, we will show that the commutator
subgroup [G,G] < G, i.e. the group generated by all elements of the form
ghg~'h™! actually agrees with the full group G. To this end it suffices to
show that |G, G] contains all upper and lower unipotents. One calculates

UsQpl— Ot = UsU_o—t5 = U(—c—t)s € [G, G]

and similarly for lower unipotents.
4) As x = 1, it follows that m, = m for all g € G and thus m is in fact
X g g
left-invariant. This proves the claim.

Lemma 2 (Iwasawa decomposition). Let g € SLy(R), then there are unique k € K,
a€ A, ueU such that g = uak. We write k = k(g), a = a(g) and v = u(g). We
also denote by t, € R the number defined by a(g) = ay, .

Proof. Consider v = eag. Then there exists a unique k € SOz such that vk = ||v]|ez.
Choose t € R such that vka; = es. Then eska; = es implies gka; = u for some
uw € U and thus ¢ = wa_;k. Uniqueness follows from uniqueness of k,a; and
right-cancellation in groups. O

Lemma 3 (K AK-decomposition). Let g € SLa(R). Then there is a unique t and
there are k,1 € SO(R) such that g = kay¢l. In fact, for every e > 0 the set

Ve=K{a;l|t|<e} K (¢>0)
is an open neighbourhood of the identity.

Proof. Let S C R?\ {0} be a circle, then Sg is an ellipse. Let k& € SO2(R) sending
the major axis of the ellipse to the real line. Now choose ¢t € R such that Sgka; is
again a circle. As gka; sends one circle to another circle, it follows from linearity
that gka,; sends circles to circles (i.e. is a linear transformation that preserves lengths
and thus in fact orthogonal). As det(gka;) = 1, it follows that gka; € SO3(R).

It remains to show the uniqueness. Note that for ¢ = kal holds S'g = S'al
and the latter is in fact independent of the choice of the decomposition of g. The
element a determines the ratio between the semi-minor axes, and thus is uniquely
defined by the image of S* under g.

In order show that these sets form an open neighbourhood, look at the action
of SLa(R) on H and consider the set V. -i. This is given by the (hyperbolic) ball
determined by the piece (¢7¢,¢e°) - i around i — because K moves points in H along
the hyperbolic circle centered at i — and thus an open neighbourhood of i. As the
map G — H, g — ¢-iis a quotient map, the preimage given by V% is an open subset
of G. (]

Proposition 1. The set of primitive integer vectors in R2? is given by I' - eq =
esl’ 2T/T, where oy =T NU.

Proof. Let g = (¢ g) €T, then ad — bc = 1 implies that ¢ and d are coprime. Thus
eag = () is a primitive vector.
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Let v = (m,n) € Z? be a primitive vector. Then m,n are coprime and thus there
are a,b € Z so that am + bn = 1. In particular g = (% %) € I satisfies v = eag.
It follows that the primitive vectors are contained in I' - e5 and using the definition
of a group action, it follows that I' acts transitively on the set of primitive vectors.

Finally Stabr(ez) = Stabg(ez) NI' = U NT implies the claim. O

In order to prove the equidistribution of long horocycle orbits after twisting with
elements in SO2(R), we include the following elementary lemma.

Lemma 4. Let ¢ : (—00,0) — C be a function and a € C. The following are
equivalent:

(1) For all € > 0 there is some T, € (—00,0) such that for all t < T, holds
lp(t) —al < e (ie. p(t) = aast— —o0).

(2) For every sequence (tn)nen of negative numbers satisfying t,, — —oo holds
o(tn) = a as n — oo.

Proof. 1t is clear that the first item implies the second. In order to prove the
opposite implication, assume the first item is false, i.e. there is some € > 0 such
that for all T < 0 there exists some ¢ < T with |p(t) — a| > . Choose t; < —1
such that |¢(t) — a| > . Assume that we have found 0 > ¢; > ... > t,, such that
tpy —tp—1 < —lforall 1 < k < n and |p(ty) —a] > e forall 1 < k < n. By
assumption, there is some t,41 < t, — 1 such that |p(t,+1) — a] > ¢ and proceed
inductively. The sequence (t,)nen satisfies t,, — —oo and ¢(t,) 4 a. O

Lemma 5. Fort € R let ky € SO2(R) arbitrary. The sets TUa_k; equidistribute
in I\G as t — —oo in the following sense. For all f € C.(I'\G) holds

1
/ f(Cusa_iky)ds 2o f(x)dz.
0 r/c

Proof. The motivation behind this is that 'Ua_; = I'a_;U and thus I'a_; has a
periodic U-orbit of volume e~%, because T'a_;u, = a_; <= a_jusay = Uets € L.
The proof that the sets 'Ua_; equidistribute is a result attributed to Sarnak, but
can and in this course will be obtained by more elementary means via Margulis’
“banana” trick, which is the content of the talk preceding this one. It remains to
show that this result is not affected by translation of the orbit using elements in
SO2(R).

Using the preceding lemma, it suffices to show that for every sequence (t,)nen
and for every f € C.(I'\G) we have

1
[ fua b yis = [ e
0 r/G
As SO2(R) is compact, every sequence contains a subsequence such that — keeping
the same indices — k;, — k € SO2(R). We will write k,, and a,, instead of k;, and
a_¢,. Let now € > 0 arbitrary. Using the triangle inequality, we have

1 1 1
S nkn - d = s nkn - s nk
[ suank) - [ s < | [ fCuonk) - [ )

r/G

1
/ k- f(Tusay) —/ E7l f(x)dx
0 r/G

As f is uniformly continuous, there is some N; € N such that for all n > N; holds
|f(xkn) — f(zk)| < 5 for all z € G/T. Note that k! - f € C.(X), so that as ['Ua,,
equidistributes in I'\G, we find that there is some Ny € N such that for all n > N;

+
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we have )
’/ kL f(Tugan) — | k7L fla)da| < .
0 r/G 2
Setting N = max{N7, N2} shows that
1
n>N = ‘ f(Cusank,) — (r)dz| < e.
0 r/G

Now we invoke the argument from the class. Every subsequence contains a sub-
sequence which converges to fF /G f(x)dz, hence the whole sequence converges to
this limit and thus equidistribution follows. O

Corollary 2. Let g, be a sequence in SLa(R) such that a(gy) = a—q,, fort, — —oo
(in particular Ug, — oo in U\G). Then T'Ug,, equidistributes in T\G.

Proof. TUg, = TUa—+, k(gn), hence it follows from the preceding statement. [

Proposition 2. In fact, the rate of equidistribution (for fixed f) is independent of
ki, d.e. for all e > 0 there is a T. < 0 with the right property for all ki € SO2(R).

Proof. This is the same argument as before. If this was not true, there were an
¢ > 0 such that for all T < 0 one could find some ¢t < T and some k; € SO2(R)
such that

’/1 f(Tusa_iky)dt — flz)dz| > e.
0

G/T
This contradicts the preceding discussion. (I

For the calculations to follow, we will often employ the folding/unfolding trick.
Let H < G be a closed subgroup such that I's, < H and assume that I'oo H C ' oo \G
is a closed subset. Assume furthermore that I'oo\ H admits an H-invariant measure
mrp__ g and that H\G admits a G-invariant measure my,¢. Then the map sending
f € C(Tu\G) to

/ / f(Cochg)dmr g (Toch)dmp q(Hg)
H/GJToo/H

is a well-defined G-invariant measure on I'o,\G.
Indeed the main point is that the map which send f € C.(Too\G) to Tf :
H\G — C defined by

Tf(Hg) = [ J(Chg)dmrsn(Coh)
Too/H
is well-defined and satisfies T'f € C.(H\G). The fact that T'f is well-defined as
a function on H\G follows immediately from H-invariance of mp_ . Let g € G
such that T'f(Hg) # 0, then there is some h € H such that f(I'oohg) # 0 and thus
T'wwhg € supp (f), so that Hg C pg(supp f), where pg : T x\G — H\G denotes
the canonical projection I'nog — Hg. As the latter is continuous, it follows that
pr (supp f) is compact and thus supp T'f is compact. It remains to show that T'f is
continuous. Indeed Let g, g, € G such that Hg,, — Hg, i.e. there is a sequence of
h, € H such that h,g, — g. Continuity of the projection implies that I'shy g, —
I'wg. As argued above, we have Tf(Hgy,) = Tf(Hhng,). Define f,(Toch) =
fCochhngn), f*Toch) = f(Teohg) (for Tooh € Too\H). Then continuity of f
implies that f, — f* pointwise as n — co. Moreover, continuity of the action G ~
I's\G implies that there exists a compact neighbourhood V' C G of the identity
and some Ny € N such that for all n > Ny holds supp f,, C (supp f*)V. Again by
continuity of the action, the subset (supp f*)V is a compact subset of '\, \G and
thus the function ¥ = || f|lcoL(supp f*)vrr. m is an integrable function on I'oo\H
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satisfying |f,| < ¢ pointwise. Hence dominated convergence yields T'f(Hg,) —
Tf(Hg) as n — oo.

One can show that up to scalar multiples there is at most one G-invariant Borel
measure on I'o,\G.

Corollary 3. Let m¢g be the Haar measure on G induced by the disintegration via
the action of G on R*\ {0} (c¢f. Corollary 1). Let mr i be the G invariant measure
on T\G induced by mg. Let mp__y be the U-invariant measure on I'oo\U induced
by the disintegration via the action of U on T'U. Then

[ ] fCaugdme uCaadmye@We) = [ Y fCargdmee(Ty).
U/G T /U /G ~eTw /T

Proof. Using uniqueness (up to scalar multiples) of the SLo(R)-invariant mea-
sure on ', \G, it suffices to find a subset of I'.,\G which is given the same
non-zero measure by the two formulae. To this end (similarly to what happens
in the end), let E C T'x\G be the set E = {Tousaik;|s| < 5,6 <0}. Write
E' = {usa;k;|s| < 3,t <0}. The sets E and E’ are injective for the quotient maps
I'wwg— T'g and g — T'g respectively. Hence we obtain

/ 15(Torg)dmr o (Tg) = / 15 (Tg)dmr,(Tg)
r/G

Fooy€leo /T r/a

:/ /]lE/(ug)de(u)de/G(Ug)
v/aJu

—[ [ tetugdme u(Cuidmye(Us).
U/G JTuo /U
O
In the case at hand, we are given the two quotients as in the diagram

I \G
/ \
U\G NG

instead of just one and our goal is to use the disintegration with respect to both of
these quotients. The count of interest is given by the number of points along the
T-orbit of U in the quotient space on the left, whereas the U-orbit of I' is known
to equidistribute (when expanded by the geodesic flow).

Proposition 3 (Average counting result). Let r > 0 and define F,. : T\G — R by

F.(Tg) = leaT'g N B,.(0)].

o
vol(B,(0))

Then {T\D)
r r—oox VO [e%e]
L R s AYe)

in the weak-star topology. Here my,q is a finite (not necessarily probability) G-
invariant measure on I'\G induced by my;q and my .

Proof. Let f € C.(I'\G), then

1
Lo f(@)F(x)dmr a(x) = m e f(Tg) va%;w/lﬂ 15, (0)(e2v9)dl'g

1

- m /FOO/G f(Tg)1p,0)(e29)dl'scg

dmr/q
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= 7/ / J(Tug)lp, (0)(e2g)dlocudUg
vol(B U/G Jra U

o) )
— o [t [ fCugdludts
vol (B, (0)) Juye ™ 2" e jw
1 / !
B — 1p, (egg)/ f(Tusg)dsdUyg.
VO](BT(O)) U/G B (0) 0
Let g € G, then |e2g|| = |le2a(g)]| = e#. Let ¢ > 0 and choose T. > 0 so that
1
Tusg) r)dz| <e
[, s~ iy [ 1

whenever t; > T, and let 7. = ¢> . Then for ever r > r. we obtain

1 1
vol(B,(0)) /U - Lg, (0)(€29) / f(Tusg)dsdUg

1
= 7V01(BT(0)) /{Uw oy <T / f(Tusg)dsdUg
1
- vol(B,(0)) /{Ug <o s <r / f(Tusg)dsdUg

1
+ 7V01(Br(0)) /{Ug i <T€ / f(Tusg)dsdUg.

By choice of 7., the first integral satisfies

1 1
VOI(BT(O))/{UQ;TESJQQ<T}/O f(FUsg)dstg
__ vol(B,(0)) — vol(B,.(0)) 1 "
~ vol(B,(0)) (VOI(I‘\G) rG f(z)d —|—€>

r—o0 VOI(T' 5o \U) A 4 e
BT IYe) (F/Gf( Jdo + )

The second integral is bounded by

0 VUBL(0) e
VOI(BT(O)) /{Ug§etéq<r5} VOI(BT(O)) Hf”oo — 0.

As e was arbitrary, this proves the claim. (I

1
/ f(Fusg)dstg’ <
0

It remains to derive a counting statement from the averaged counting obtained
above. Note the upcoming choice of the radii which corresponds to the requirement
that the “balls” under consideration ought to be well-rounded.

Proposition 4. Given r € R, we define B, = B¢ (0). Then

r~>oo VO]( oo\U) _ i
vy L e NBl = me T e

Proof. Note that T' - e = esI’ by definition of the action G ~ R2. Let ¢ > 0

be arbitrary and choose § > 0 such that Vigfg*f ) < 1+¢ forall r > 1. Indeed

vol(B,45) = vol(B,)e?’, so that any § > 0 satisfying & < % will do. There is
some symmetric, open neighbourhood V' C G of the identity, such that B,V C B, s
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for all » > 1. To this end we use the discussion of the K AK-decomposition for
SLo2(R) and choose as an open neighbourhood the set

V =K {a;|t] < 20} K.
For any g = kayl € V one calculates
1tl
lvgll = llvkas]| < = [lv]| < e|lv]].

Hence V has the desired properties.
Now let g € V' arbitrary, then

1 1
F, IN=——|esl'gN Byrs| = ————|esT N Bpysg
+s(gl) VOI(BT+5)|€2 g +ol VOI(BT+5)|€2 59 |
1 1 1
> —————|esI'N B | > ————|es'N B,
~ vol(By4s) ez | 1+ e vol(B,) le2 |
1
=—F,. (I
Tre I)

If now ¢ € C.(T'\G) is non-negative, has integral 1, support contained in T'V" (which
is an open neighbourhood of I') and does not vanish at I', then the above implies

P00 vol(T oo \U)
F.(I) < 1+g/ Frys(@)p(z)de =3 (1 +¢&)— 2,
O <(+0) [ Frrslalple)ds =5 (149705
and hence we obtain

. 1 vol(Ta\U)
1 ——— e’ N B, | < —————~.
m sup gyt N Bl = Toma)

On the other hand the same argument yields that for all g € V and r > 1+ § we
have

1 1
F.(I')= ———|esTNB,| > ———|eaI’ N B,_59 !
) = LBl = Sl 59|
1 1
=———|es'gN B,_ —F,. (T
voi By €219 N Brsl > 7 Frs(T)
and thus
1 rooo 1 vol(Too\U)
F.(T) > F,._ de —
R /F/G s@ele)de = 7= TG
and as € was arbitrary, the claim follows. O

Lemma 6. For our choice of normalization of the Haar measure, we have
2

vol(P\G) = %
Proof. We combine two disintegration formulae. First we recall that SLo(R) acts
transitively on H by Moebius transformations with Stabgy,,g)(i) = SO2(R). Fur-
thermore the hyperbolic area measure dmy = y—lgdxdy is preserved by the action of

SLo(R). As discussed in an earlier talk, the functional given by sending f € C.(G)
to the number

AL = /H /S oy T 050, (B )

defines a Haar measure on SLy(R). In particular, uniqueness of the Haar measure
up to multiplicative constants implies that there is some C' > 0 such that for all
f € C.(G) holds

Af) =C /U . /U f(ug)dmy (u)dmza (Ug).
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The above equality applies to simple functions as is usually discussed in measure

theory.
/ G \
G/K U\G

We will fix a fundamental domain F for I'/G and calculate A1(1r), which will be
relatively easy. Next we fix some appropriate function f € L'(G) and calculate

both A;(f) and
n=J . | g

for some function whose Haar integral does not vanish. In particular, A;(f)Aa(f) #

0 and thus C = /XIEQ In particular we obtain that for our choice of the Haar

measure holds

wl(i) = P2 (L)

First of all, we recall that the set

is (up to a set of zero measure) a fundamental domain for I'\G.

Claim 1. The map

gS02(R) = 2 — 1r(gk)dmg (k)
SO (R)
is identiacal to 2w times the indicator function of F = {z € H;|z| > 1,R(z) € 1,41}
Indeed, by definition the set F' is invariant under SO2(R) on the right. Hence
1r(gk) = 1r(g) and thus the claim follows easily. Hence in order to calculate the

volume of I'\G with respect to the measure induced by Aj, it suffices to calculate
mp(F). One obtains

1
/ \ /\/ﬁ —dydz = _1 ﬁdm = 2arcsin(3)
and thus Ay (F) = 4 arcsin(3).
On the other hand, we know that the set
E=T"{z e H;R(2) € [0,3],3(2) > 1}
= {usatk;s € [0, %},t < 0}

is injective and contains an open subset of SLy(R). We calculate the measure of E
in both ways. First of all, one obtains

1(1g) —27r/ / —dydx =,

and on the other hand one obtains

As(1pr) = %Vol(Bl(O)) = g
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so that we obtain C = 2. Next we note that

arcsin(3) = arcsin(sin(%)) = 7,

and thus follows

7T'2

Vol(P\G) = As (L) = %Al(]lF) =T =)
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