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Problem 1 [10 Points]

Let (M,d) be a nonempty metric space.

(i) When is a set Ω ⊂M of second Baire category?

(ii) Suppose M is complete. By Baire’s theorem, what property does M have?

(iii) Suppose now that M is countable and that no point in M is isolated. (Recall
that, if X is a topological space, a point x ∈ X is isolated if {x} is open.) Prove
that M is not complete.

(iv) Does there exist a compact, countable, infinite and complete metric space? If so,
find an example, if not, explain why.

(v) Prove that R cannot be written as a countable union of closed, bounded, pairwise
disjoint intervals.

Hint: Suppose that the intervals [ai, bi] with ai, bi ∈ R, ai < bi, i ∈ N, cover R
and are mutually disjoint. Which properties does the set ⋃∞i=1{ai, bi} have?

Problem 2 [5 Points]

Let T : `1 → `2 be given by Tx = x. Consider the space X = `1× `2 and the subspaces

U = `1 × {0}, V = ΓT (the graph of T ), W = U + V.

Which of these spaces is closed, which is not closed, and why?

Problem 3 [5 Points]

Recall that a sequence (bn)n∈N in a Banach space X is a Schauder basis for X if
any x ∈ X can be uniquely represented as a convergent series x = ∑∞

n=1 xnbn with
coefficients xn ∈ R.

(i) Show that the unit vectors

en = (0, 0, . . . , 0, 1︸︷︷︸
nth pos.

, 0, . . .), n ∈ N,

define a Schauder basis for any `p, p ∈ [1,∞[ and also for the space

c0 =
{
x = (xn)n∈N ∈ `∞ ; lim

n→∞
xn = 0

}
.

(ii) Is (en)n∈N a Schauder basis for `∞?
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Problem 4 [10 Points]

(i) State and prove the Closed Graph Theorem.

(ii) LetX, Y , Z be Banach spaces, let A : X → Y be a linear map and let B ∈ L(Y, Z)
(i.e. B is linear and continuous) and injective. Prove that if BA ∈ L(X,Z), then
A ∈ L(X, Y ).

Problem 5 [10 Points]

(i) State Arzelà-Ascoli’s Theorem, defining explicitly the notion of “equicontinuity”.

(ii) Let 0 < α ≤ 1 and let Ω ⊆ Rn be an open, bounded subset. For continuous
functions ϕ : Ω→ R, consider the so-called Hölder norm

‖ϕ‖C0,α(Ω) = ‖ϕ‖L∞(Ω) + sup
x,y∈Ω,
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

,

and the corresponding normed space:

C0,α(Ω,R) =
{
ϕ ∈ C0(Ω,R) ; ‖ϕ‖C0,α(Ω) <∞

}
.

Prove that a sequence (ϕn)n∈N ⊂ C0,α(Ω,R) which is bounded with respect to
the Hölder norm has a uniformly convergent subsequence.

(iii) Let X = L2(]0, 1[,R) and let T : X → X be given by T (f)(x) =
∫ x

0 f(y)dy.

(a) Prove that T (X) ⊂ C0,1/2([0, 1],R)

(b) Use (ii) to prove that T is a compact operator from X to Y = C0([0, 1],R).

Problem 6 [10 Points]

Let H be an infinite-dimensional Hilbert space and let T ∈ L(H) be an injective,
compact, self-adjoint operator.

(i) Show that 0 is in the spectrum of σ(T ).

(ii) Show that Im(T ) = T (H) is dense in H but Im(T ) 6= H.
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Compendium of Functional Analysis

1. `p Spaces For a sequence x = (xn)n∈N ⊆ R, and p ∈ [1,∞], we set

‖x‖`p =



(∑
n∈N
|xn|p

)1/p

if p <∞,

sup
n∈N
|xn| if p =∞.

Then `p = {x = (xn)n∈N ; ‖x‖`p <∞} are Banach spaces.

For p ≤ q there holds ‖x‖q ≤ ‖x‖p and we have the inclusion `p ⊆ `q, which is
strict for p 6= q.

2. Hölder’s Inequality If Ω ⊆ Rn is measurable and p, q ∈ [1,∞] are so that
1/p+ 1/q = 1, then for every f ∈ Lp(Ω,R) and g ∈ Lq(Ω,R) there holds

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

3. Open Mapping Theorem Let X, Y be Banach spaces and let L ∈ L(X, Y ) be
surjective. Then L is an open mapping. In particular, if L is bijective, then
L−1 ∈ L(Y,X).

4. Hahn-Banach Theorem Let X be a normed space, let M ⊂ X be a closed linear
subspace, M 6= X, and let x0 ∈M so that

d = dist(x0,M) = inf
x∈M
‖x0 − x‖X > 0.

Then there exists l ∈ X∗ so that l|M = 0 and

‖l‖X∗ = 1, l(x0) = d.

5. Compact Operators Let X, Y be a Banach space. An operator T ∈ L(X, Y ) is
called compact if T (B1(0;X)) has compact closure in Y .

Equivalently, T ∈ L(X, Y ) is compact if and only if it maps weakly to strongly
converging sequences, i.e. for every sequence (xn)n∈N ⊂ X with xn

w
⇁ x as

n→∞ in X, there holds Txn → Tx in Y as n→∞.

6. Spectrum Let X be a Banach space over C and let A : DA ⊆ X → X be linear.
The Resolvent Set of A is

ρ(A) =
{
λ ∈ C ; λ Id−A : DA → X is bijective and (λ Id−A)−1 ∈ L(X)

}
,

where Id : X → X denotes the identity map.

The Spectrum of A is σ(A) = C \ ρ(A).
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