Exercise 1.1 Consider the set of all real-valued sequences

$$S = \{ (s_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : s_n \in \mathbb{R} \}.$$

Prove that the function $d: S \times S \to [0, \infty)$ defined by

$$d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

is a metric over S, and that (S, d) is a complete metric space.

Hint: the function $t \mapsto \frac{t}{1+t}$, t > 0, is concave.

Exercise 1.2 Let $\Omega \subseteq \mathbb{R}^m$ be an open subset and let $(\Omega_n)_{n \in \mathbb{N}}$ be an exhaustion of Ω by open sets with compact closure, that is, each $\Omega_n \subseteq \mathbb{R}^m$ is open, $\overline{\Omega}_n$ is compact and contained in Ω , $\Omega_n \subseteq \Omega_{n+1}$ and $\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$. Define

$$d(f,g) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{\|f - g\|_{C^0(\overline{\Omega}_n)}}{1 + \|f - g\|_{C^0(\overline{\Omega}_n)}}$$

for every continuous, real-valued functions $f, g \in C^0(\Omega, \mathbb{R})$.

- (a) Prove that d defines a metric in $C^0(\Omega, \mathbb{R})$.
- (b) Prove that $(C^0(\Omega, \mathbb{R}), d)$ is a complete metric space.
- (c) Let $C_c^0(\Omega, \mathbb{R})$ be the set of continuous functions with compact support in Ω . Prove that $C_c^0(\Omega, \mathbb{R})$ is dense in $(C^0(\Omega, \mathbb{R}), d)$.

Remark. The topology defined by d is called topology of the convergence on compact subsets of Ω . It is possible to prove that it does not depend on the chosen exhaustion.

Exercise 1.3 Let (X, d) be a metric space. Prove that the following are equivalent:

- (a) The complement of every meager set is dense in X.
- (b) The interior of every meager set is empty.
- (c) The empty set is the only open and meager set.
- (d) Countable intersections of open dense sets are dense.

Hint: recall that A is dense in X if and only if its complement has empty interior.

Last modified: 23 September 2019

Remark. Thanks to Baire's Category Theorem, each of the above conditions are satisfied in a complete metric space.

Exercise 1.4 Let $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be a sequence. Define, for every $p \in [1, \infty]$,

$$\|(x_n)_{n\in\mathbb{N}}\|_{\ell^p} = \begin{cases} \left(\sum_{n\in\mathbb{N}} |x_n|^p\right)^{1/p} & \text{if } p < \infty, \\ \sup_{n\in\mathbb{N}} |x_n| & \text{if } p = \infty, \end{cases}$$

and let $\ell^p = \{(x_n)_{n \in \mathbb{N}} \mid ||(x_n)_{n \in \mathbb{N}}||_{\ell^p} < \infty\}$. For every $p \in [1, \infty], (\ell^p, || \cdot ||_{\ell^p})$ is a Banach space.

Let now $1 \le p < q \le \infty$. Prove that:

- (a) $\ell^p \subsetneq \ell^q$ and $||(x_n)_{n \in \mathbb{N}}||_{\ell^q} \le ||(x_n)_{n \in \mathbb{N}}||_{\ell^p}$ for every $(x_n)_{n \in \mathbb{N}} \in \ell^p$.
- (b) ℓ^p is meager in ℓ^q .
- (c) $\bigcup_{1 \le p < q} \ell^p \subsetneq \ell^q$.

Hint for (b): The set $A_n = \{(x_n)_{n \in \mathbb{N}} \in \ell^q \mid ||(x_n)_{n \in \mathbb{N}}||_{\ell^p} \leq n\} \subseteq \ell^q$ is closed in ℓ^q and has empty interior in ℓ^q .

Remark. Notice that $\ell^p = L^p(\mathbb{N}, \mathcal{A}, \mu)$, where \mathcal{A} is the σ -algebra of all subsets of \mathbb{N} and μ is the counting measure, i. e. $\mu(M)$ is the cardinality of M (possibly ∞).