Exercise 2.1 Let X be a vector space. An *algebraic basis* for X is a subset $E \subset X$ such that every $x \in X$ is uniquely given as *finite* linear combination of elements in E.

- (a) Let $(X, \|\cdot\|)$ be a Banach space. Show that any algebraic basis for X is either finite or uncountable.
- (b) Find an example of a normed space with a countably infinite algebraic basis.

Hint for (a): Assume that X has a countably infinite algebraic basis $\{e_1, e_2, \ldots\}$ and deduce a contradiction to Baire's Lemma by considering the sets $A_n = \text{span}\{e_1, \ldots, e_n\}$.

Exercise 2.2 Let $f \in C^0([0,\infty))$ be a continuous function satisfying

$$\forall t \in [0, \infty) : \lim_{n \to \infty} f(nt) = 0.$$

Prove that $\lim_{t\to\infty} f(t) = 0$.

Hint: Apply Baire's Lemma as in the proof of the uniform boundedness principle.

Exercise 2.3 Let

$$c_c := \{ (x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \exists N \in \mathbb{N} \ \forall n \ge N : \ x_n = 0 \}$$

be the space of compactly supported sequences and

$$c_0 := \{ (x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \lim_{n \to \infty} x_n = 0 \}.$$

be the space of sequences converging to zero.

- (i) Show that $(c_c, \|\cdot\|_{\ell^{\infty}})$ is not complete. What is the completion of this space?
- (ii) Prove the strict inclusion

$$\bigcup_{p \in [1,\infty)} \ell^p \subsetneq c_0$$

Exercise 2.4 Show that the subspaces

$$U = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0 \},$$
$$V = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n} \}$$

are both closed in $(\ell^1, \|\cdot\|_{\ell^1})$ while the subspace $U \oplus V$ is not closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Last modified: 26 September 2019

ETH Zürich	Functional Analysis I	D-MATH
Autumn 2019	Exercise Sheet 2	Prof. M. Struwe

Hint. Prove that if any sequence $(x_k)_{k\in\mathbb{N}}$ of elements $x_k = (x^{k,n})_{n\in\mathbb{N}} \in \ell^1$ converges to $(x_n)_{n\in\mathbb{N}}$ in ℓ^1 for $k \to \infty$, then each entry $x_{n,k}$ converges in \mathbb{R} to x_n for $k \to \infty$. For the second part, show first that c_c (see Exercise 2.1) is a subset of $U \oplus V$.

Exercise 2.5 Let $(X, \|\cdot\|)$ be a normed vector space. Prove that the following statements are equivalent.

- (i) $(X, \|\cdot\|)$ is a Banach space.
- (ii) For every sequence $(x_n)_{n \in \mathbb{N}}$ in X with $\sum_{k=1}^{\infty} ||x_n|| < \infty$ the limit $\lim_{N \to \infty} \sum_{n=1}^{N} x_n$ exists.

Hint: A Cauchy sequence converges if and only if it has a convergent subsequence.