Exercise 7.1 Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space. Let $Y \subset H$ be any subspace and let $f: Y \to \mathbb{R}$ be a continuous linear functional. By the Hahn-Banach Theorem there exists an extension $F: H \to \mathbb{R}$ with $F|_Y = f$ and ||F|| = ||f||. Prove that F is unique.

Exercise 7.2 Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space and $Q \subset H$ a nonempty convex subset. Let $x \in H$ with distance $d := \operatorname{dist}(x, Q)$ from Q. Prove that:

- (i) Every sequence $(x_n)_{n \in \mathbb{N}}$ in Q with $\lim_{n \to \infty} ||x_n x||_H = d$ is a Cauchy sequence in H.
- (ii) If Q is closed in H, then there exists a unique $y \in Q$ with $||x y||_H = d$.

Exercise 7.3 Let $(X, \|\cdot\|_X)$ be a normed space.

(i) Let A be a subset of X and let conv(A) denote its convex hull. Prove the following characterization:

$$\operatorname{conv}(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k \mid n \in \mathbb{N}, \ x_1, \dots, x_n \in A, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^{n} \lambda_k = 1 \right\}.$$

(ii) Let $A, B \subset X$ be compact, convex subsets. Prove that $\operatorname{conv}(A \cup B)$ is compact.

Exercise 7.4 (Lions-Stampacchia). Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space Let $a: H \times H \to \mathbb{R}$ be a bilinear map so that:

- (a) a(x, y) = a(y, x) for every $x, y \in H$,
- (b) there exists $\Lambda > 0$ so that $|a(x,y)| \leq \Lambda ||x||_H ||y||_H$ for every $x, y \in H$,
- (c) there exists $\lambda > 0$ so that $a(x, x) \ge \lambda ||x||_{H}^{2}$ for every $x \in H$.

Let moreover $f: H \to \mathbb{R}$ be a continuous linear functional. Consider the map $J: H \to \mathbb{R}$ given by

$$J(x) = a(x, x) - 2f(x).$$

Prove that, for any $K \subset H$ be a nonempty closed, convex subset, there exists a *unique* $y_0 \in K$ such that *both* the following inequalities hold:

- (i) $J(y_0) \leq J(y)$ for every $y \in K$,
- (ii) $a(y_0, y y_0) \ge f(y y_0)$ for every $y \in K$.

Exercise 7.5 Consider the spaces

$$c_0 := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^\infty \mid \lim_{k \to \infty} x_k = 0 \right\}, \qquad c := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^\infty \mid \lim_{k \to \infty} x_k \text{ exists} \right\}$$

with norm $\|\cdot\|_{\ell^{\infty}}$.

- (i) Is c a Banach space?
- (ii) Show that the dual space of $(c_0, \|\cdot\|_{\ell^{\infty}})$ is *isometrically* isomorphic to $(\ell^1, \|\cdot\|_{\ell^1})$.
- (iii) To which space is the dual space of $(c,\|\cdot\|_{\ell^\infty})$ isomorphic?

Hints to Exercises.

- **7.1** Start by considering the case where Y is a *closed* subspace, and use Riesz representation theorem. Then reduce the general case to this one by considering the closure of f.
- 7.2 Use the parallelogram identity.
- 7.3 For (ii), show that

$$\operatorname{conv}(A \cup B) = \bigcup_{\substack{s,t \ge 0\\s+t=1}} (sA + tB),$$

and then prove that the right-hand side is compact.

- **7.4** Note first that $a(\cdot, \cdot)$ is a scalar product topologically equivalent to $(\cdot, \cdot)_H$, then use Riesz Representation Theorem for f with this scalar product and Exercise 7.2.
- **7.5** For (ii), compare with Satz 4.4.1 (dual of L^p). For (iii): how can one transform a sequence in c into a sequence in c_0 ?