Exercise 9.1 Let ℓ^{∞} be the space of real-valued bounded sequences and let c be the subspace of converging sequences. Consider the functional

$$\lim : c \to \mathbb{R} \quad \lim(x_n) = \lim_{n \to \infty} x_n.$$

(i) Prove that it extends to a continuous linear functional $\lim : \ell^{\infty} \to \mathbb{R}$ with norm $\|\lim = 1$ and that there holds

$$\liminf_{n \to \infty} x_n \le \lim_{n \to \infty} x_n$$

(ii) Use such construction to prove that the space ℓ^1 is not reflexive.

Exercise 9.2 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent.

- (i) T is continuous.
- (ii) T is weak-weak sequentially continuous, namely if $(x_n)_{n \in \mathbb{N}}$ is any weakly converging sequence X, then Tx_n is weakly convergent in Y.

Exercise 9.3 Let $(X, \|\cdot\|_X)$ be a finite-dimensional normed space. Prove that then strong and weak topologies coincide, namely that a sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ is weakly convergent if and only if it is strongly convergent.

Exercise 9.4 Let $(H, \langle \cdot, \cdot \rangle)$ be a real vector space and let $(e_n)_{n \in \mathbb{N}} \subseteq X$ be an *or*thonormal system for H, that is a countable set of elements so that

 $\langle e_j, e_k \rangle = \delta_{jk}$ for every $j, k \in \mathbb{N}$.

- (i) Prove $e_n \stackrel{\text{w}}{\rightarrow} 0$ as $n \to \infty$.
- (ii) Suppose now that $(e_n)_{n \in \mathbb{N}}$ forms a *Hilbert basis for H*, i.e. that span $\{e_n : n \in \mathbb{N}\}$ is a dense subspace of *H*. Prove that for every $x \in H$ there holds

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, \tag{1}$$

and that Parseval's Identity holds:

$$||x||_{H} = \left(\sum_{n=1}^{\infty} |\langle x, e_{n} \rangle|^{2}\right)^{1/2}.$$
 (2)

 $1/_{3}$

Exercise 9.5 Let $(H, (\cdot, \cdot)_H)$ be a real Hilbert space.

- (i) Prove that if the sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ converges weakly to x and $||x_n||_H \to ||x||_H$, then it converges strongly to x.
- (ii) Suppose $(x_n)_{n \in \mathbb{N}}$ converges weakly to x and $(y_n)_{n \in \mathbb{N}} \subseteq X$ converges strongly to y. Prove that $(x_n, y_n)_H \to (x, y)_H$.
- (iii) Suppose $x \in H$ with $||x||_H \leq 1$, prove that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in H satisfying $||x_n||_H = 1$ for all $n \in \mathbb{N}$ and $x_n \xrightarrow{w} x$ as $n \to \infty$.
- (iv) Prove the *Riemann-Lebesgue Lemma*: Let $f_n: [0, 2\pi] \to \mathbb{R}$ given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$, then $f_n \stackrel{\text{w}}{\to} 0$ in $L^2((0, 2\pi), \mathbb{R})$ as $n \to \infty$.

Hints to Exercises.

- **9.1** For (i), one inequality follows from Hahn-Banach; for the other one argue by contradiction.
- **9.4** Use (after proving it) Bessel's inequality: $\sum_{n=0}^{\infty} |(x, e_n)_H|^2 \le ||x||_H^2$.
- **9.5** For (iii), use Exercise 9.4. Recall that in every Hilbert space the Graham-Schmidt process allows for construction of orthonormal systems.