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Exercise 2.1 Let X be a vector space. An algebraic basis for X is a subset E ⊂ X
such that every x ∈ X is uniquely given as finite linear combination of elements in E.

(a) Let (X, ‖·‖) be a Banach space. Show that any algebraic basis for X is either
finite or uncountable.

(b) Find an example of a normed space with a countably infinite algebraic basis.

Hint for (a): Assume thatX has a countably infinite algebraic basis {e1, e2, . . .} and de-
duce a contradiction to Baire’s Lemma by considering the sets An = span{e1, . . . , en}.

Solution. (a) Assume by contradiction thatX has a countably infinite algebraic basis
{e1, e2, . . .}. For n ∈ N we define the linear subspaces An = span{e1, . . . , en} ⊂ X.

As finite dimensional subspace, An is closed. Suppose that An has non-empty
interior. Then there exist x ∈ An and ε > 0 such that Bε(x) ⊂ An. Since An is a
linear subspace, we may subtract x ∈ An from the elements in Bε(x) to obtain
Bε(0) ⊂ An. For the same reason,

An ⊃ {λy | λ > 0, y ∈ Bε(x)} = X.

This implies dimX ≤ n which contradicts our assumption that the algebraic
basis of X is infinite. Thus An must have empty interior and thus, being also
closed, is nowhere dense. By assumption,

X =
⋃

n∈N
An,

which implies that X is meager. Since X is complete, this contradicts Baire’s
Lemma.

(b) Let X be the space of polynomials p : [0, 1]→ R with real coefficients endowed
with the norm ‖·‖C0([0,1]). Let fn : [0, 1]→ R be given by the monomial fn(x) = xn.
Then, {fn | n ∈ N} is a countable algebraic basis for X.

Note that According to (a), (X, ‖·‖C0([0,1])) is necessarily incomplete.

Exercise 2.2 Let f ∈ C0([0,∞)) be a continuous function satisfying

∀t ∈ [0,∞) : lim
n→∞

f(nt) = 0.

Prove that limt→∞ f(t) = 0.

Hint: Apply Baire’s Lemma as in the proof of the uniform boundedness principle.
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Solution. Define fn(t) = |f(nt)| for every n ∈ N. Let ε > 0 and let

AN :=
∞⋂

n=N

{t ∈ [0,∞[ | fn(t) ≤ ε}.

Since fn is continuous, the pre-image f−1
n ([0, ε]) = {t ∈ [0,∞[ | fn(t) ≤ ε} is closed

for all n ∈ N. Thus, the set AN is closed as intersection of closed sets. By assumption,

∀t ∈ [0,∞[ ∃Nt ∈ N ∀n ≥ Nt : fn(t) ≤ ε

which implies

[0,∞[ =
∞⋃

N=1
AN .

Baire’s Lemma applied to the complete metric space ([0,∞[, |·|) implies that there
exists N0 ∈ N such that AN0 has non-empty interior, i. e. there exist 0 ≤ a < b such
that ]a, b[ ⊂ AN0 . This implies

∀n ≥ N0 ∀t ∈ ]a, b[ : fn(t) ≤ ε

⇔ ∀n ≥ N0 ∀t ∈ ]na, nb[ : |f(t)| ≤ ε.

If n > a
b−a

, then (n+ 1)a < nb. For the intervals Ja,b(n) := ]na, nb[ this means that
Ja,b(n) ∩ Ja,b(n+ 1) 6= ∅. Let N1 > max{N0,

a
b−a
}. Then, in particular,

∀t > N1a : |f(t)| ≤ ε.

This proves lim
t→∞

f(t) = 0 since ε > 0 was arbitrary.

Exercise 2.3 Let

cc := {(xn)n∈N ∈ `∞ | ∃N ∈ N ∀n ≥ N : xn = 0}

be the space of compactly supported sequences and

c0 := {(xn)n∈N ∈ `∞ | lim
n→∞

xn = 0}.

be the space of sequences converging to zero.

(i) Show that (cc, ‖·‖`∞) is not complete. What is the completion of this space?

(ii) Prove the strict inclusion ⋃
p∈[1,∞)

`p ( c0.
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Solution. (i) First way: If en = (δk,n)k∈N denotes the sequence whose n-th term
is 1 and all the other terms vanish, then (en)n∈N is an algebraic and countable
basis of c0. By Exercise 1, c0 cannot be complete.

Second way: Let xk = (xk,n)n∈N ∈ cc be given by

xk,n =


1
n

for n ≤ k,

0 for n > k.

Then (xk)k∈N is a Cauchy sequence in (cc, ‖·‖`∞). However, its limit sequence
x∞ given by x∞,n = 1

n
for all n ∈ N is not in cc but in c0 \ cc, thus the space is

not complete.

Note that, since `∞ is a complete space and cc ⊂ `∞, the completion of cc will
still be a subspace of `∞.

Claim: c0 is the completion of (cc, ‖·‖`∞).

Let us prove that cc ⊆ c0. Let x = (xn)n∈N ∈ cc. Then there exists a sequence
of sequences xk = (xk,n)n∈N ∈ cc such that xk → x in `∞ as k →∞. Let ε > 0.
In particular, there exists K ∈ N such that

sup
n∈N
|xK,n − xn| = ‖xK − x‖`∞ < ε

Since xK ∈ cc, there exists N0 ∈ N such that xK,n = 0 for all n ≥ N0. This
implies that

∀n ≥ N0 : |xn| ≤ sup
n≥N0

|0− xn| < ε.

We conclude that xn → 0 as n→∞ which means that x ∈ c0.

Let us now prove that c0 ⊆ cc. Let x = (xn)n∈N ∈ c0. Let (xk)k∈N be the
sequence of sequences xk = (xk,n)n∈N in cc given by

xk,n =

xn for n ≤ k,

0 for n > k.

Let ε > 0. By assumption, there exists Nε ∈ N such that |xn| < ε for every
n ≥ Nε.

⇒ ∀k ≥ Nε : ‖xk − x‖`∞ = sup
n>k
|0− xn| ≤ ε.

We conclude that xk → x in `∞ as k →∞. Since x ∈ c0 is arbitrary, c0 ⊆ cc.
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(ii) One inclusion is clear since any sequence (xn)n∈N ∈ `p for p ∈ [1,∞), necessarily
satisfies xn → 0 for n→∞ by standard facts concerning summable series.

To see that the inclusion is strict, consider the sequence y = (yn)n∈N ∈ c0 given
by

yn = 1
log(n+ 1) .

Then, y ∈ c0 but y /∈ `p for any p ≥ 1: indeed, given any p ≥ 1 there exists
Np ∈ N such that log(n+ 1) ≤ n

1
p for every n ≥ Np which allows the estimate

∞∑
n=1

( 1
log(n+ 1)

)p

≥
∞∑

n=Np

( 1
n

1
p

)p

=
∞∑

n=Np

1
n

=∞.

Exercise 2.4 Show that the subspaces

U = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n = 0},

V = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n−1 = nx2n}

are both closed in (`1, ‖·‖`1) while the subspace U ⊕ V is not closed in (`1, ‖·‖`1).

Hint. Prove that if any sequence (xk)k∈N of elements xk = (xk,n)n∈N ∈ `1 converges to
(xn)n∈N in `1 for k →∞, then each entry xn,k converges in R to xn for k →∞. For
the second part, show first that cc (see Exercise 2.1) is a subset of U ⊕ V .

Solution.
Claim 1. Let (xk)k∈N be a sequence of sequences xk = (xk,n)n∈N ∈ `1 and let x =
(xn)n∈N ∈ `1. Then, the following implication is true.

lim
k→∞
‖xk − x‖`1 = 0 ⇒ ∀n ∈ N : lim

k→∞
|xk,n − xn| = 0.

Proof. Let ε > 0 and n ∈ N. By assumption, there exists Kε ∈ N such that

∀k ≥ Kε : |xk,n − xn| ≤
∞∑

n=1
|xk,n − xn| = ‖xk − x‖`1 < ε.

Claim 2. U = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n = 0} is closed in (`1, ‖·‖`1).
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Proof. Let (xk)k∈N be a sequence of sequences xk = (xk,n)n∈N ∈ U converging to
x = (xn)n∈N in `1. By definition, x2n,k = 0 for every n ∈ N. According to Claim 1,

x2n = lim
k→∞

x2n,k = 0

for every n ∈ N. Thus, x ∈ U .

Claim 3. V = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n−1 = nx2n} is closed in (`1, ‖·‖`1).

Proof. Let (xk)k∈N be a sequence of sequences x(k) = (xk,n)n∈N ∈ V converging to
x = (xn)n∈N in `1. By definition, xk,2n−1 = nxk,2n for every n ∈ N. By Claim 1,

x2n−1 = lim
k→∞

xk,2n−1 = lim
k→∞

nxk,2n = nx2n

for every n ∈ N. Thus, x ∈ V .

Claim 4. cc := {(xn)n∈N ∈ `∞ | ∃N ∈ N ∀n ≥ N : xn = 0} ⊂ U ⊕ V .

Proof. Let x ∈ cc. Then, x = u+ v with u = (um)m∈N and v = (vm)m∈N given by

um =

xm − nxm+1, if m = 2n− 1,
0, if m is even

vm =

nxm+1, if m = 2n− 1,
xm, if m is even.

The assumption x ∈ cc implies v, u ∈ cc ⊂ `1. Then, u ∈ U holds by construction and
v ∈ V follows from v2n−1 = nx2n−1+1 = nx2n = nv2n for every n ∈ N.

Claim 5. The space cc is dense in (`1, ‖·‖`1).

Proof. Let x ∈ `1. Let xk = (xk,n)n∈N ∈ cc be given by

xk,n =

xn for n < k,

0 for n ≥ k.

Then,

‖xk − x‖`1 =
∞∑

n=k

|xn|
k→∞−−−→ 0.

Claim 6. The sequence x = (xm)m∈N defined as follows is in `1 but not in U ⊕ V .

xm =

0, if m is odd,
1

n2 , if m = 2n.
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Proof. Since ∑∞n=1
1

n2 <∞ we have x ∈ `1. Suppose x = u+ v for u ∈ U and v ∈ V .
Then, u2n = 0 implies v2n = x2n = 1

n2 for every n ∈ N. By definition of V , we have
v2n−1 = nv2n = 1

n
for every n ∈ N. However, ∑∞n=1

1
n

= ∞ implies v /∈ `1 which
contradicts the definition of V .

Claims 4, 5 and 6 imply that

U ⊕ V ⊃ cc = `1 ) U ⊕ V.

Therefore, U ⊕ V cannot be closed.

Exercise 2.5 Let (X, ‖·‖) be a normed vector space. Prove that the following
statements are equivalent.

(i) (X, ‖·‖) is a Banach space.

(ii) For every sequence (xn)n∈N in X with
∞∑

k=1
‖xn‖ <∞ the limit lim

N→∞

N∑
n=1

xn exists.

Hint: A Cauchy sequence converges if and only if it has a convergent subsequence.

Solution. If (X, ‖·‖) is a Banach space, and (xk)k∈N any sequence in X with∑∞
k=1‖xk‖ < ∞, then (sn)n∈N given by sn = ∑n

k=1 xk is a Cauchy sequence (and
hence convergent) since by assumption, for every ε > 0 there exists Nε ∈ N such that
for every m ≥ n ≥ Nε,

‖sm − sn‖ ≤
m∑

k=n+1
‖xk‖ ≤

∞∑
k=Nε+1

‖xk‖ < ε.

Conversely, we assume for every sequence (xk)k∈N in X that ∑∞k=1‖xk‖ <∞ implies
convergence of sn = ∑n

k=1 xk in X for n→∞. Let (yn)n∈N be a Cauchy in X. Then,

∀k ∈ N ∃Nk ∈ N ∀n,m ≥ Nk : ‖yn − ym‖ ≤ 2−k.

Without loss of generality, we can assume Nk+1 > Nk. Let xk := yNk+1 − yNk
. Then,

∞∑
k=1
‖xk‖ =

∞∑
k=1
‖yNk+1 − yNk

‖ ≤
∞∑

k=1
2−k <∞,

which by assumption implies that

sn =
n∑

k=1
xk =

n∑
k=1

(yNk+1 − yNk
) = yNn+1 − yN1

converges in X for n→∞. Hence, (yNn)n∈N is a convergent subsequence of (yn)n∈N.
Since (yn)n∈N is Cauchy, it converges to the same limit in X. Thus, X is complete.
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