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Exercise 6.1 Let (X, ||-||x) and (Y, ||-||y) be Banach spaces and let
A:D,CX =Y, B:DgCX-=Y

be linear operators with D4 C Dp. Suppose that there exist a € (0,1) and b > 0
such that

| Bx||y < al|Az|y + b|jz||x for every x € Da.
Show that if A has closed graph, then (A + B): D4 — Y has closed graph.
Solution. Let (x,)nen be a sequence in D4 so that x,, — x in X and (A+ B)x, — y
in Y. We are going to prove that (A + B)z = y.
Claim: (A(xy,))nen s convergent in'Y.

Proof. 1f suffices to prove that it is a Cauchy sequence. By triangle inequality and
the assumption,

[AGzn = zm)lly < 1A+ B)(zn — zm)lly + [ B(zn = 2m)lly
< A+ B)(@n — zm)lly + all Az, — zm)lly + bllzn — 2m|[x-

thus
1
[A(Zn — 2m)|ly < 1—a ([[(A+ B)(@n — zm)|ly + bllTn — zmlx) -

Since a, b are fixed and (z,,)nen, ((A+ B)(x,))nen are convergent (and thus Cauchy),
this inequality implies that claim. O

Since the graph of A is closed by assumption, we have =, — x in D, and Az, — Ax.
Consequently, writing Bx,, = (A + B)x,, — Ax,, we deduce that also (B(xy,))nen is
convergent and

n—o0

|1B(z — zn)lly < allA(z —2n) + bllz — znf]| — 0
which implies Bz, — Bz in Y. Thus

y = lim (A+ B)x, = nh_g)lo Az, + nh_}rgo Bz, = Az + Bx = (A + B)z.

n—oo

Exercise 6.2 Let (X, ||-|[x) and (Y, ||-|ly) be Banach spaces. Let A: Dy C X —» Y
be a closable linear operator. Assume that its closure A is injective. Show that then
the inverse operator A™! is closable and A—1 = (A4)~!.
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Solution. Since the closure A is assumed to be injective, A is injective and therefore
has an inverse A~!: A(X) — D, defined over the image of A. The graphT'4-1 C Y x X
of A=1 is given by

Ly ={(y,7):y € AX), v = A"y} = {(Ax,2) : v € D4}

Now if a sequence (yy, Ty )neny C T'a-1 is so that (y,, z,) — (0,z), then Az, =y, — 0,
hence Az = 0. Since A is injective, z = 0 and so (Satz 3.4.1) A~! is closable.

Similarly, for a sequence (Yn, Tn)nen C I'4-1, there holds (y,,z,) — (y,z) if and only
if (x,, Ax,) — (x,y) , which is the same as as saying that I'y-1 = ['—1. O

A

Exercise 6.3 Let (X, ||| x) be a Banach space and U C X a closed subspace. Recall
the notion of topologically complemented space introduced in Exercise 4.3. Prove
that:

(i) If dim(U) < oo, then U is topologically complemented.
(ii) If dim(X/U) < oo, then U is topologically complemented.

Solution. (i) It is sufficient to construct a projection map P as in Exercise 4.3.

Let e1,...,e, be a basis of the given finite-dimensional subspace U C X let
fi,--s fn € L(U,R) be the associated dual basis, uniquely defined by the
conditions

1 ifi =y,
0 else.

filej) = 05 = {

From the Hahn-Banach Theorem it follows that there exist extensions F; €
L(X;R) with ||F;|| = || fi]]. We define
P: X =X, P(z)=> Fi(z)e.

=1

Then P is linear and continuous, since

1Pzlx < (SIEedx ) Il
=1

By construction, P(X) C span{ey,...,e,} = U. By definition of f; and F; we
have P(e;) = e; for every i € {1,...,n}. Therefore, P(X) = U. Finally, for
every r € X,

n

(PoP)a) = P(Y () es) = Y- Fia) Pler) = Y Filo) e = Plo).

It follows from Exercise 4.3 that U is topologically complemented.
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(ii) Denote by m: X — X/U, w(x) = [z] the canonical quotient map. Since

dim(X/U) = m < oo we can choose a basis [e1],...,[en,] for X/U and let as
above fi,... fm € L(X/U,R) be the associated dual basis. Set F} := fiom: X —
R and define

P:X - X, Px)= Zn:Fl(x) €.

i=1

Since Fj(e;) = fi(m(e;)) = fi(lej]) = d;j we have P o P = P as above. Since
le1], ..., [em] is a basis for X /U, the representatives ey, ..., e, must be linearly
independent in X. Therefore, P(z) = 0 implies F;(z) = f;([z]) = 0 for every
i € {1,...,n} which in turn implies [z] = [0] or x € U. Conversely, z € U
implies 7(z) = [0] and P(z) = 0. Thus we have shown ker(P) = U. As in
Exercise 4.3, we conclude that (1 — P) is a continuous projection onto U which
implies that U is topologically complemented. O

Exercise 6.4 Let (X, ||-||x) be a normed space and let f: X — R be linear and not
identically zero.

(i) Show that f is not continuous if and only if ker(f) is dense in X.
(ii) Find an explicit example for X and f as in (i).
Solution. (i) Necessity. Suppose that f is not continuous. Then there exists a
sequence (zy)ren in X, which can be normed to ||zx||x = 1 by linearity of f,

such that |f(zx)| — 0o as k — oo. Without loss of generality, we can assume
f(zy) # 0 for every k € N. Let now z be any element in X. For each k£ € N we

define
e, N
and so yy € ker(f). We then see that
G @) ke
Iz = yrllx = ’f(xk)‘n k|l x ) —30

S0 (Yk)ren converges to z and consequently ker(f) is dense in X.

Sufficiency. If f were continuous, than ker(f) = f~'({0}) would be closed,
and thus ker(f) = X. But then f had to be identically 0, contradicting the
hypothesis.
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(ii) An example is given by X = C°([0,1],R) with the L'-norm || - |[11((,1)) and
f = dp the evaluation at 0:
flg) = (0), for every € C°([0, 1], R).

Then ker f contains the space of all compactly supported functions C'2°((0, 1), R),
which is well-known to be dense in the L!-topology. O

Exercise 6.5 Let (X ||-||x) be a normed space and let ¢: X — R be a continuous
linear functional. Assume N := ker(p) C X and let zp € X \ N. Prove that the
following are equivalent.

(i) There exists yo € N with ||zg — yo||x = dist(zo, N).

(ii) There exists 1 € X with [|z1||x = 1 and ||| = |¢(x1)].
Solution. Recall first that every element z € X is of the form » = txy + y with
uniquely determined t € R and y € N.

“(i) = (i1)". Call d = dist(xo, N) and set @1 = (x¢ — yo). Then |lz||x = 1. Let

x € X and let t € Rand y € N be as above. If t = 0, then ¢(x) = 0 is not interesting.
Therefore, we assume t # 0 and observe

lp(2)] = [p(tre +y)| = [p(tdzy +tyo +y)| = [t|d|p(x1)],
|zllx = lltzo + yllx = [tlzo + Tullx > |t] gig]fvllxo —Jllx = [t]d.
This implies that

lp(@)| _ [t]d][p(z1)]
< It]d = |p(x1)].

lell < sup <
zex [zl x

Since on the other hand |p(z1)| < ||¢||, the inequalities above are in fact identities
and we conclude |o(x1)| = ||¢]].

“(ii) = (i)” As above, we have z; = tzy + y; for uniquely determined ¢ € R and
y1 € N. In fact, ¢ # 0 since |p(x1)| = |l¢|| # 0. Therefore, 2o = +(x1 — y1). Let
Yo 1= —%yl € N. Then

I Ix =+
Tn — = - =
0 — Yollx t o)

and with ||| = ¢(z1) there results ||¢||||zo — vo|| = ¢(x0). But then for every y € N
we have

lellllzo = woll = ¢(x0) = e(x0 —y) < [lellllzo = yll,
and (i) follows. O

4/6
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Exercise 6.6 Let (X, ||-||x) = (CO([—L 1)), ||‘||CO([_171])). Recall the map ¢: X — R
given by

o) = [ s@yde= [

from Exercise 3.2. Consider its kernel N := {f € X | ¢(f) = 0} and some zy € X \ N.
Show that N is closed. Show that there does not exist any yo € N such that

|0 — yol| = dist(xg, V).

Solution. From Exercise 3.2 (i) we know that ¢: X — R is a continuous linear
functional. Therefore N = ker(yp) is a closed subspace of X. From Exercise 3.2 (ii)
we know that ||¢|| = 2. From Exercise 3.2 (iii) we know that there does not exist
any r; € X with ||zi||x = 1 and |p(z1)] = 2 = ||¢||. From Exercise 6.5 we know
that this is equivalent to the statement that there does not exist any y, € N with
|0 — yol| = dist(xg, N). O
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Hints to Exercises.
6.1 Start by proving that (Ax,),en is Cauchy.

6.3 When working with finite dimensional vector spaces, you may always argue with
bases and dual bases.

6.5 Start by recalling the first isomorphism theorem for linear maps.



