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Exercise 7.1 Let (H, (·, ·)H)) be a Hilbert space. Let Y ⊂ H be any subspace and
let f : Y → R be a continuous linear functional. By the Hahn-Banach Theorem there
exists an extension F : H → R with F |Y = f and ‖F‖ = ‖f‖. Prove that F is unique.

Solution. We first consider the case where Y is also closed subspace, so that (Y, (·, ·)H)
is itself a Hilbert space. Then by the Riesz Representation Theorem there exists a
unique h ∈ Y so that

f(y) = (y, h)H for every y ∈ Y.

Then f has an obvious linear and extension to H given by

F (x) = (x, h)H for every x ∈ H,

which satisfies ‖F‖ = ‖h‖H = ‖f‖.

Claim 1: F is the unique extension of f to H with norm ‖f‖.

Proof. If F̃ : H → R is another extension of f , by the Riesz Representation Theorem
it must be of the form F̃ (x) = (x, h̃)H for some h̃ ∈ H, and since ‖F̃‖ = ‖f‖ there
must hold ‖h‖H = ‖h̃‖H . Since F̃ |Y = f = F |Y , we have

0 = F (y)− F̃ (y) = (y, h− h̃)H , for every y ∈ Y,

and so h− h̃ ∈ Y ⊥. But then since h ∈ Y there holds

‖h‖2
H = ‖h̃‖2

H = ‖h̃− h+ h‖2
H = ‖h̃− h‖2

H + ‖h‖2
H ,

and so ‖h̃− h‖2
H = 0 and this implies h̃ = h. This proves Claim 1.

Let us now consider the case where Y is not necessarily closed.

As a continuous linear operator, f is closable. Let f be its closure.

Claim 2: there holds D(f) = Y and ‖f‖ = ‖f‖.

Proof. The inclusion D(f) ⊆ Y is obvious; for the converse, consider y ∈ Y and a
sequence (yk)k∈N in Y such that yk → y as k →∞. From

|f(yn)− f(ym)| ≤ ‖f‖‖yn − ym‖H ,

we conclude that (f(yk))k∈N is a Cauchy sequence in R. Thus, there exists z ∈ R such
that f(yk)→ z as k →∞. This means that (y, z) is in the closure of the graph of f
and we conclude y ∈ D(f).
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As for the equality of the norms, ‖f‖ ≥ ‖f‖ is obvious; on the other hand if y and
(yk)k∈N are as above,

|f(y)| = lim
k→∞
|f(yk)| ≤ lim

k→∞
‖f‖‖yk‖H = ‖f‖‖y‖H ,

which implies ‖f‖ ≤ ‖f‖. This proves Claim 2.

Claim 2 implies that, in order to extend f : Y → R to H, we can first uniquely extend
to f : Y → R without changing the norm and then extend to F : H → R. We may
then reduce ourselves to the case where Y is a closed subspace, and so the conclusion
is reached thanks to Claim 1.

Remark. It may be possible to reduce immediately to the case where Y is closed by
observing that since f is linear and continuous then it is also uniformly continuous;
consequently by a well-known extension theorem it can be extended to Y , with the
same norm. Such extension is unique and so coincides with f .

Exercise 7.2 Let (H, (·, ·)H) be a Hilbert space and Q ⊂ H a nonempty convex
subset. Let x ∈ H with distance d := dist(x,Q) from Q. Prove that:

(i) Every sequence (xn)n∈N in Q with lim
n→∞
‖xn − x‖H = d is a Cauchy sequence

in H.

(ii) If Q is closed in H, then there exists a unique y ∈ Q with ‖x− y‖H = d.

Solution. Without loss of generality, we can assume x = 0. Otherwise we apply the
translation y 7→ y − x which is an isometry to the entire space H.

(i) Let (xn)n∈N be a sequence in the convex set Q ⊂ H with ‖xn‖ → d = dist(0, Q)
as n→∞. By convexity of Q, we have that

xn, xm ∈ Q ⇒ xn + xm
2 ∈ Q ⇒

∥∥∥∥xn + xm
2

∥∥∥∥
H
≥ dist(0, Q) = d

for every n,m ∈ N. The parallelogram identity (true in every Hilbert space):

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

then yields

‖xn − xm‖2
H = 2‖xn‖2

H + 2‖xm‖2
H − ‖xn + xm‖2

H

= 2‖xn‖2
H + 2‖xm‖2

H − 4
∥∥∥∥xn + xm

2

∥∥∥∥2

H
≤ 2‖xn‖2

H + 2‖xm‖2
H − 4d2.

From 2‖xn‖2
H → 2d2 as n→∞, we conclude that (xn)n∈N is a Cauchy-sequence

in H.
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(ii) Let (xn)n∈N be a sequence in Q with ‖xn‖H → d = dist(0, Q) as n → ∞.
According to (i), it must be a Cauchy-sequence. Since H is complete and Q
closed, (xn)n∈N converges to some y ∈ Q.

Suppose there is another point ỹ ∈ Q with ‖ỹ‖ = d. Then, again by convexity
and the parallelogram identity,

d2 ≤
∥∥∥∥y + ỹ

2

∥∥∥∥2

H
≤
∥∥∥∥y + ỹ

2

∥∥∥∥2

H
+
∥∥∥∥y − ỹ2

∥∥∥∥2

H
= 1

2‖y‖
2
H + 1

2‖ỹ‖
2
H = d2

and we conclude that all the inequalities are in fact identities which implies∥∥∥∥y − ỹ2

∥∥∥∥2

H
= 0.

Thus, y = ỹ.

Exercise 7.3 Let (X, ‖·‖X) be a normed space.

(i) Let A be a subset of X and let conv(A) denote its convex hull. Prove the
following characterization:

conv(A) =
{ n∑
k=1

λkxk

∣∣∣∣ n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
.

(ii) Let A,B ⊂ X be compact, convex subsets. Prove that conv(A ∪B) is compact.

Solution. (i) We denote by C the set on the right-side.

“(⊆)”: Since A ⊂ C, it is enough to show that C is convex. In fact, given
0 < t < 1 we have

t
n∑
k=1

λkxk + (1− t)
m∑
k=1

λ′kx
′
k =

n+m∑
k=1

µkyk

with

0 ≤ µk :=

tλk if k ∈ {1, . . . , n},
(1− t)λ′k−n if k ∈ {n+ 1, . . . , n+m}

A 3 yk :=

xk if k ∈ {1, . . . , n},
x′k−n if k ∈ {n+ 1, . . . , n+m}
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and µ1 + . . .+µn+m = t(λ1 + . . .+ λn) + (1− t)(λ′1 + . . .+ λ′m) = t+ (1− t) = 1.

“(⊇)”: Let x1, . . . , xn ∈ A and let λ1, . . . , λn ≥ 0 with λ1 + . . . + λn = 1. We
can assume λ1 6= 0. Since conv(A) is convex and contains x1, x2 ∈ A, and since
λ1

λ1+λ2
+ λ2

λ1+λ2
= 1,

conv(A) 3 λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2 = λ1x1 + λ2x2

λ1 + λ2
=: y2.

For the same reason,

conv(A) 3 λ1 + λ2

λ1 + λ2 + λ3
y2 + λ3

λ1 + λ2 + λ3
x3 = λ1x2 + λ2x2 + λ3x3

λ1 + λ2 + λ3
=: y3.

Iterating this procedure, we obtain

conv(A) 3 λ1 + . . .+ λk−1

λ1 + . . .+ λk
yk−1 + λk

λ1 + . . .+ λk
xk = λ1x1 + . . .+ λkxk

λ1 + . . .+ λk
=: yk.

for every k ∈ {3, . . . , n}. Since λ1 + . . .+λn = 1, we have yn = λ1x1 + . . .+λnxn.

(ii) First we prove the following characterization.

Claim: there holds

conv(A ∪B) = D :=
⋃

(s,t)∈4
(sA+ tB),

where 4 := {(s, t) ∈ R2 | s+ t = 1, s, t ≥ 0}.

Proof. “(⊆)”: By choosing (s, t) = (1, 0) we see A ⊂ D. Analogously, B ⊂ D,
hence A ∪B ⊂ D. If x ∈ (conv(A ∪B)) \ (A ∪B), then (i) implies that x is of
the form

x =
j∑

k=1
skak +

n∑
k=j+1

tkbk,

where j, n ∈ N, where ak ∈ A and bk ∈ B as well as sk, tk ≥ 0 for every k and
where s1 + . . . + sj + tj+1 + . . . + tn = 1. Since x /∈ A ∪ B by assumption, we
have

s :=
j∑

k=1
sk > 0, t :=

n∑
k=j+1

tk > 0,
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with s+ t = 1. Since A and B are both convex by assumption,

a := 1
s

j∑
k=1

skak ∈ A, b := 1
t

n∑
k=j+1

tkbk ∈ B,

and we have shown x = sa+ tb ∈ D.

“⊇” Let a ∈ A and b ∈ B. Then a, b ∈ conv(A ∪ B). Since conv(A ∪ B) is
convex, we must have sa+ tb ∈ conv(A ∪B) for every (s, t) ∈ 4. This proves
conv(A ∪B) ⊇ D.

Let (xn)n∈N be a sequence in conv(A∪B). Then by the claim there exist an ∈ A
and bn ∈ B as well as (sn, tn) ∈ 4 such that xn = snan + tnbn for every n ∈ N.
Since 4 is compact in R2, a subsequence ((sn, tn))n∈Λ1⊂N converges in 4; since
A and B are compact there are subsequences (an)n∈Λ2 convergent in A and
(bn)n∈Λ3 convergent in B. Therefore, setting

Λ4 = Λ1 ∩ Λ2 ∩ Λ3,

we obtain that (xn)n∈Λ4 converges in D, and so conv(A ∪B) is compact.

Exercise 7.4 (Lions-Stampacchia). Let (H, (·, ·)H) be a Hilbert space Let a : H×H →
R be a bilinear map so that:

(a) a(x, y) = a(y, x) for every x, y ∈ H,

(b) there exists Λ > 0 so that |a(x, y)| ≤ Λ‖x‖H‖y‖H for every x, y ∈ H,

(c) there exists λ > 0 so that a(x, x) ≥ λ‖x‖2
H for every x ∈ H.

Let moreover f : H → R be a continuous linear functional. Consider the map
J : H → R given by

J(x) = a(x, x)− 2f(x).

Prove that, for any K ⊂ H be a nonempty closed, convex subset, there exists a unique
y0 ∈ K such that both the following inequalities hold:

(i) J(y0) ≤ J(y) for every y ∈ K,

(ii) a(y0, y − y0) ≥ f(y − y0) for every y ∈ K.
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Solution. Note that since a is symmetric with

λ‖x‖2
H ≤ a(x, x) ≤ Λ‖x‖2

H ,

a(·, ·) induces on H a scalar product equivalent to (·, ·)H , whose associated norm we
denote by ‖·‖a =

√
a(·, ·). Thus as a consequence of Riesz Representation Theorem (or

by the Lax-Milgram Theorem) there exists a unique x0 ∈ H satisfying f(x) = a(x0, x)
for all x ∈ H. In particular there holds

J(x) = a(x, x)− 2f(x) = a(x, x)− 2a(x0, x) (1)
= a(x− x0, x)− a(x0, x)
= a(x− x0, x− x0) + a(x− x0, x0)− a(x, x0)
= a(x− x0, x− x0)− a(x0, x0).

Since the topology induced by ‖ · ‖a is equivalent to the given one on H, K is also
closed in (H, ‖·‖a) and we can apply Exercise 7.2 (b) in the Hilbert space (H, a(·, ·))
and thus there exists a unique y0 ∈ K satisfying

‖x0 − y0‖a = inf
y∈K
‖x0 − y‖a. (2)

Now we turn to prove the required statements:

(i) By (1)-(2) we have that

J(y0) = ‖y0 − x0‖2
a − ‖x0‖2

a ≤ ‖y − x0‖2
a − ‖x0‖2

a = J(y)

for every y ∈ K.

(ii) We need to show that

a(y0, y − y0)− f(y − y0) = a(y0, y − y0)− a(x0, y − y0)
= a(y0 − x0, y − y0)

is non-negative for every y ∈ K. Since y0 ∈ K we have ty + (1− t)y0 ∈ K for
every fixed y ∈ K and every t ∈ [0, 1] by convexity of K. We consider the map
f : [0, 1]→ R given by

f(t) =
∥∥∥x0 −

(
ty + (1− t)y0

)∥∥∥2

a
=
∥∥∥x0 − y0 + t(y0 − y)

∥∥∥2

a
.

By (2), and since ty + (1− t)y0 ∈ K by convexity, f has a minimum at t = 0
which implies f ′(0) ≥ 0. We compute

f ′(t) = 2a
(
x0 − y0 + t(y0 − y), y0 − y

)
and so

f ′(0) = 2a(x0 − y0, y0 − y) = 2a(y0 − x0, y − y0) ≥ 0,

as desired.
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Exercise 7.5 Consider the spaces

c0 :=
{

(xk)k∈N ∈ `∞
∣∣∣ lim
k→∞

xk = 0
}
, c :=

{
(xk)k∈N ∈ `∞

∣∣∣ lim
k→∞

xk exists
}
.

with norm ‖ · ‖`∞ .

(i) Is c a Banach space?

(ii) Show that the dual space of (c0, ‖·‖`∞) is isometrically isomorphic to (`1, ‖·‖`1).

(iii) To which space is the dual space of (c, ‖·‖`∞) isomorphic?

Solution. (i) Since `∞ is Banach, to show that c is complete it suffices to prove
that it is closed in `∞. Let κ = (κn)n∈N ∈ c. Then there exists a sequence of
sequences (xk)k∈N, xk = (xk,n)n∈N ∈ c such that

sup
n∈N
|xk,n − xn| = ‖xk − κ‖`∞

k→∞−−−→ 0.

Let ε > 0. Let kε ∈ N such that ‖xkε − κ‖`∞ < ε. By definition, xkε ∈ c is a
Cauchy-sequence. Let Nε ∈ N such that |xkε,n − xkε,m| < ε for every m,n ≥ Nε.
Then

|xn − xm| ≤ |xn − xkε,n|+ |xkε,n − xkε,m|+ |xkε,m − xm| < 3ε,

for every m,n ≥ Nε which proves that x is a Cauchy-sequence. Therefore, κ ∈ c.

(ii) The linear map Ψ: `1 → c∗0 given by

Ψ(y)(x) =
∑
n∈N

xnyn,

where x = (xn)n∈N and y = (yn)n∈N is linear and well-defined, since we can
estimate

|Ψ(y)(x)| ≤
∑
n∈N
|xnyn| ≤ ‖x‖`∞‖y‖`1 ,

and consequently also ‖Ψ(y)‖c∗0 ≤ ‖y‖`1 . Let us show that in fact ‖Ψ(y)‖c∗0 = ‖y‖`1
for every y ∈ `1: given y ∈ `1 we can apply Ψ(y) to the sequence xk = (xk,n)n∈N ∈
c0 given by

xk,n =


yn

|yn| if n ≤ k and yn 6= 0,
0 else,
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which satisfies ‖x(k)‖`∞ = 1 and

lim
k→∞
|Ψ(y)(xk)| = lim

k→∞

k∑
n=1
|yn| = ‖y‖`1 ⇒ ‖Ψ(y)‖c∗0 = sup

x∈c0
‖x‖`∞=1

|Ψ(y)(x)| ≥ ‖y‖`1 .

Therefore, Ψ is an isometry and in particular is injective.

To prove that Ψ is surjective, we show first that every f ∈ c∗0 is determined by
its values on the elements ek = (ek,n)n∈N ∈ c0, where ek = (0, . . . , 0, 1, 0, . . .) has
the 1 at k-th position: in fact Given x = (xn)n∈N ∈ c0, we have

∥∥∥∥x− N∑
k=1

xkek

∥∥∥∥
`∞

= sup
n>N
|xn|

N→∞−−−→ 0.

and so continuity and linearity of f implies

f(x) = lim
N→∞

f
( N∑
k=1

xkek

)
= lim

N→∞

N∑
k=1

xkf(ek).

Given f ∈ c∗0 we claim that y := (f(ek))k∈N ∈ `1 and Ψ(y) = f . Indeed, for any
N ∈ N

N∑
k=1

∣∣∣f(ek)
∣∣∣ =

∞∑
k=1

xN,kf(ek) = f(xN) ≤ ‖f‖c∗0 ,

where xN = (xN,k)k∈N ∈ c0 with ‖xN‖`∞ ≤ 1 is defined by

xN,k =


f(ek)
|f(ek)| if k ≤ N and f(ek) 6= 0,
0 else.

Since N is arbitrary, we conclude y ∈ `1. Moreover, given any x = (xk)k∈N ∈ c0
and y as above, we have

Ψ(y)(x) =
∑
k∈N

xkyk =
∑
k∈N

xkf(ek) = f(x)

which shows that Ψ is surjective.

(iii) The dual space of (c, ‖·‖`∞) is also isomorphic to c∗0 ∼= `1 but not isometrically.
To construct an isomorphism Φ: c∗ → c∗0, we first consider the linear map
T : c→ c0 given by

Tx =
(

lim
n→∞

xn, (x1 − lim
n→∞

xn), (x2 − lim
n→∞

xn), . . .
)
.
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By definition of c and c0, the map T is well-defined. T is continuous since

| lim
n→∞

xn| ≤ ‖x‖`∞ ⇒ ‖Tx‖`∞ ≤ 2‖x‖`∞ .

Moreover, T is invertible with inverse S : c0 → c given by

S(y) 7→
(
(y2 + y1), (y3 + y1), (y4 + y1), . . .

)
.

Indeed, STx = x is immediate and TSy = y follows from limn→∞(yn + y1) = y1.
Since ‖Sy‖`∞ ≤ 2‖y‖`∞ , the map S is also continuous. So we define Φ: c∗ → c∗0
by

Φ(f) = f ◦ S.

As composition of linear maps, Φ is linear. It is also continuous since

|(Φf)(y)| = |f(Sy)| ≤ ‖f‖c∗‖Sy‖`∞ ≤ 2‖f‖c∗‖y‖`∞

By the construction above, Φ bijective with continuous inverse Φ−1(g) = g ◦ T .
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Hints to Exercises.

7.1 Start by considering the case where Y is a closed subspace, and use Riesz
representation theorem. Then reduce the general case to this one by considering
the closure of f .

7.2 Use the parallelogram identity.

7.3 For (ii), show that

conv(A ∪B) =
⋃
s,t≥0
s+t=1

(sA+ tB),

and then prove that the right-hand side is compact.

7.4 Note first that a(·, ·) is a scalar product topologically equivalent to (·, ·)H , then
use Riesz Representation Theorem for f with this scalar product and Exercise
7.2.

7.5 For (ii), compare with Satz 4.4.1 (dual of Lp). For (iii): how can one transform a
sequence in c into a sequence in c0?
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