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Exercise 8.1 Let (X, ‖·‖X) be a normed space and let ∅ 6= Q ⊂ X be an open,
convex subset containing the origin. Prove that Q can be written as intersection of
open affine half-spaces, namely that there exists a subset Υ ⊂ X∗ such that

Q =
⋂
f∈Υ
{x ∈ X | f(x) < 1}.

Solution. We show that the statement holds with

Υ = {f ∈ X∗ | ∀x ∈ X : f(x) ≤ p(x)},

where p : X → R is the Minkowski functional for Q.

Note first of all that since Q is open and contains the origin, there exists r > 0 such
that Br(0) ⊂ Q. Thus, 1

λ
x ∈ Q with λ = 2

r
‖x‖X and

p(x) ≤ 2
r
‖x‖X for every x ∈ X.

“(⊆)”: Let x ∈ Q. Since Q is open, we have p(x) < 1. For every f ∈ Υ we have
f(x) ≤ p(x) by definition. This proves f(x) < 1 for every f ∈ Υ.

“(⊇)” It is equivalent to prove that for every x0 /∈ Q there exists f ∈ Υ with f(x0) ≥ 1.
To this aim we define the functional

` : span({x0})→ R, `(tx0) = t.

Since Q is convex and contains the origin, we have p(x0) ≥ 1. In particular, we have

∀t ≥ 0 : `(tx0) = t ≤ t p(x0) = p(tx0),
∀t < 0 : `(tx0) = t < 0 ≤ p(tx0).

The Hahn-Banach theorem implies that there exists a linear continuous functional
f : X → R which agrees with ` on span({x0}) with f(x) ≤ p(x) ≤ 2

r
‖x‖X , and

therefore f ∈ Υ. Since f(x0) = 1, the claim follows.

Exercise 8.2 Let (H, (·, ·)H) be a Hilbert space and let ∅ 6= K ⊂ H be a closed,
convex subset. Denote by P : H → K be the projection operator onto K which maps
x ∈ H to the unique point P (x) ∈ K with ‖x − Px‖H = dist(x,K) constructed in
Exercise 7.7 (ii).

(i) For every x1, x2 ∈ H prove the inequality

‖P (x1)− P (x2)‖H ≤ ‖x1 − x2‖H .

1/6



ETH Zürich
Autumn 2019

Functional Analysis I
Exercise Sheet 8

d-math
Prof. M. Struwe

(ii) Prove that

K =
⋂
x∈H
{y ∈ H | (x− P (x), P (x)− y)H ≥ 0}.

Solution. (i) We first note that given any x0 ∈ H we have

(P (x0)− x0, y − P (x0))H ≥ 0 for every y ∈ K. (1)

This inequality is proved in Exercise 7.4 (ii) for a(·, ·) = (·, ·)H . Let x1, x2 ∈ H.
Applying (1) twice we see that

‖P (x1)− P (x2)‖2
H = (P (x1)− P (x2), P (x1)− P (x2))H

= (P (x1)− x1, P (x1)− P (x2))H + (x1, P (x1)− P (x2))H
− (P (x2)− x2, P (x1)− P (x2))H − (x2, P (x1)− P (x2))H

≤ (x1 − x2, P (x1)− P (x2))H ,

thus with Caychy-Schwarz

‖Px1 − Px2‖2
H ≤ ‖x1 − x2‖H‖Px1 − Px2‖H ,

which yields the desired inequality.

(ii) “(⊆)”: Let y ∈ K. Then (Px− x, y − Px)H ≥ 0 for any x ∈ H by (1).

“(⊇)”: Let y ∈ H \K. Then, choosing x = y, we have Py 6= y which implies

(Py − y, y − Py)H = −‖Py − y‖2
H < 0

and shows that y is not element of the set on the right hand side.

Exercise 8.3 A normed space (X, ‖·‖X) is called strictly convex if, for every x, y ∈ X
with x 6= y and ‖x‖X = 1 = ‖y‖X , there holds

‖λx+ (1− λ)y‖X < 1 for every λ ∈ (0, 1)

Let (X, ‖·‖X) be a normed space.

(i) Prove that if X∗ is strictly convex, then for all x ∈ X there exists a unique
x∗ ∈ X∗ with ‖x∗‖2

X∗ = x∗(x) = ‖x‖2
X .

(ii) Find a counterexample to (i) when X∗ is not strictly convex.
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Solution. (i) The existence of x∗ is given by Satz 4.2.1 and we need to show
uniqueness. Given 0 6= x ∈ X, let x∗ ∈ X∗ and y∗ ∈ X∗ satisfy

‖x∗‖2
X∗ = x∗(x) = ‖x‖2

X = y∗(x) = ‖y∗‖2
X∗ .

Then

‖x‖2
X = 1

2
(
x∗(x) + y∗(x)

)
=
(1

2x
∗ + 1

2y
∗
)

(x) ≤
∥∥∥∥1

2x
∗ + 1

2y
∗
∥∥∥∥
X∗
‖x‖X ,

hence

1 ≤
∥∥∥∥ x∗

2‖x‖X
+ y∗

2‖x‖X

∥∥∥∥
X∗
.

If x∗ 6= y∗ were true, since∥∥∥∥∥ x∗

‖x‖X

∥∥∥∥∥
X∗

= 1 =
∥∥∥∥∥ y∗

‖x‖X

∥∥∥∥∥
X∗
,

then with λ = 1
2 in the definition of strict convexity we would obtain∥∥∥∥ x∗

2‖x‖X
+ y∗

2‖x‖X

∥∥∥∥
X∗

< 1,

thus contradicting the previous inequality.

(ii) Consider the space (R2, ‖·‖∞), where ‖p‖∞ = max{|p1|, |p2|}. Let x = (1, 1).
Then, ‖x‖∞ = 1 and the functionals

x∗ : R2 → R2, y∗ : R2 → R2

(p1, p2) 7→ p1 (p1, p2) 7→ p2

both satisfy x∗(x) = y∗(x) = 1 = ‖x‖2
∞ and

‖x∗‖X∗ = sup
‖p‖∞≤1

|x∗(p)| = sup
|p1|,|p2|≤1

|p1| = 1 = sup
|p1|,|p2|≤1

|p2| = ‖y∗‖X∗ .

Exercise 8.4

(i) Let K ⊂ R2 be a closed, convex subset. Prove that the set E of all extremal
points of K is closed.
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(ii) Is the statement of (i) also true in R3?

Solution. (i) It is clear that the set E of extremal points of the closed, convex
subset K ⊂ R2 must be a subset of the boundary ∂K of K because the center
of every ball contained in K is a convex combination of other points in this ball.

Let (yn)n∈N be a sequence in E which converges to some y ∈ K. Suppose
y /∈ E. Then there exist distinct points x1, x0 ∈ K and some 0 < λ < 1
such that λx1 + (1 − λ)x0 = y. For any n ∈ N, the point yn is extremal
and therefore cannot lie on the segment between x1 and x0. Intuitively, the
sequence (yn)n∈N must approach y from “above” or “below” this segment. By
restriction to a subsequence, we can assume that all yn strictly lie on the same
side of the the affine line through x1 and x0. By convexity of K, the triangle
D = conv{x1, x0, y1} is a subset of K. The arguments above and convergence
yn → y imply that for n ∈ N sufficiently large, yn is in the interior of D and
thus in the interior of K. This however contradicts yn ∈ E ⊂ ∂K. We conclude
y ∈ E which proves that E is closed.

•
x1

•
x0

•
y

•y1

••
•
•
•
•

•

D

(ii) The set of extremal points of a closed, convex subset in R3 is not necessarily
closed: Let S = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and p± = (0, 1,±1). The
set of extremal points of conv(S ∪ {p+, p−}) is E = {p+, p−} ∪ S \ p0, where
p0 = (0, 1, 0) = 1

2p+ + 1
2p−.

Exercise 8.5 Let X be vector space and let K ⊂ X be a convex subset with more
than one element.

(i) Given an extremal subset M ⊂ K of K, prove that K \M is convex.

(ii) If N ⊂ K and K \N are both convex, does it follow that N is extremal?

(iii) Prove that y ∈ K is an extremal point of K if and only if K \ {y} is convex.

Solution. (i) Let K ⊂ X be convex and M ⊂ K an extremal subset of K.
Suppose, K \M is not convex. Then there are points x1, x0 ∈ K \M such
that x := λx1 + (1 − λ)x0 /∈ K \M for some 0 < λ < 1. Since K is convex,
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x ∈ K and hence x ∈M . However, this contradicts x1, x0 /∈M by definition of
extremal subset.

(ii) No, the interval K = [−1, 1] ⊂ R, the subset N = [−1, 0] ⊂ K and the difference
K \ N = ]0, 1] are all convex but N is not an extremal subset of K since
1
2 · (−1) + 1

2 · 1 = 0 ∈ N but 1 /∈ N .

(iii) If y ∈ K is an extremal point of K, then {y} ⊂ K is an extremal subset of K
and (i) implies that K \ {y} is convex. Conversely, if y ∈ K is not an extremal
point of K, then by definition there exist x0 ∈ K \ {y}, x1 ∈ K and some
0 < λ < 1 such that y = λx1 + (1− λ)x0; since however {y} consist of a single
point it must also hold that x1 ∈ K \ {y}, and thus K \ {y} is not convex.

Figure 1: Picture for Exercise 8.4 (ii)
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Hints to Exercises.

8.1 Define Υ by means of the Minkowski functional for Q (used in the proof of Satz
4.5.1) p : X → R given by

p(x) = inf{λ > 0 | 1
λ
x ∈ Q}.

Note that p is sublinear and combine this with the Hahn-Banach theorem.

8.2 Use that for any y ∈ K any x0 ∈ H there holds

(Px0 − x0, y − Px0)H ≥ 0,

which is special case of the an inequality shown in Exercise 7.4 (ii) with
a(·, ·) = (·, ·)H .

8.4 For (i), show that E is a subset of the boundary ∂K. Argue by contradiction
supposing E is not closed. For (ii), draw a picture.
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