Exercise 8.1 Let $(X, \|\cdot\|_X)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that Q can be written as intersection of open affine half-spaces, namely that there exists a subset $\Upsilon \subset X^*$ such that

$$Q = \bigcap_{f \in \Upsilon} \{ x \in X \mid f(x) < 1 \}.$$

Solution. We show that the statement holds with

$$\Upsilon = \{ f \in X^* \mid \forall x \in X : f(x) \le p(x) \},\$$

where $p: X \to \mathbb{R}$ is the Minkowski functional for Q.

Note first of all that since Q is open and contains the origin, there exists r > 0 such that $B_r(0) \subset Q$. Thus, $\frac{1}{\lambda}x \in Q$ with $\lambda = \frac{2}{r}||x||_X$ and

$$p(x) \leq \frac{2}{r} ||x||_X$$
 for every $x \in X$.

"(\subseteq)": Let $x \in Q$. Since Q is open, we have p(x) < 1. For every $f \in \Upsilon$ we have $f(x) \leq p(x)$ by definition. This proves f(x) < 1 for every $f \in \Upsilon$.

"(\supseteq)" It is equivalent to prove that for every $x_0 \notin Q$ there exists $f \in \Upsilon$ with $f(x_0) \ge 1$. To this aim we define the functional

$$\ell \colon \operatorname{span}(\{x_0\}) \to \mathbb{R}, \quad \ell(tx_0) = t.$$

Since Q is convex and contains the origin, we have $p(x_0) \ge 1$. In particular, we have

$$\begin{aligned} \forall t \ge 0 : \quad \ell(tx_0) &= t \le t \, p(x_0) = p(tx_0), \\ \forall t < 0 : \quad \ell(tx_0) &= t < 0 \le p(tx_0). \end{aligned}$$

The Hahn-Banach theorem implies that there exists a linear continuous functional $f: X \to \mathbb{R}$ which agrees with ℓ on span $(\{x_0\})$ with $f(x) \leq p(x) \leq \frac{2}{r} ||x||_X$, and therefore $f \in \Upsilon$. Since $f(x_0) = 1$, the claim follows.

Exercise 8.2 Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space and let $\emptyset \neq K \subset H$ be a closed, convex subset. Denote by $P: H \to K$ be the projection operator onto K which maps $x \in H$ to the unique point $P(x) \in K$ with $||x - Px||_H = \text{dist}(x, K)$ constructed in Exercise 7.7 (ii).

(i) For every $x_1, x_2 \in H$ prove the inequality

$$||P(x_1) - P(x_2)||_H \le ||x_1 - x_2||_H.$$

(ii) Prove that

$$K = \bigcap_{x \in H} \{ y \in H \mid (x - P(x), P(x) - y)_H \ge 0 \}.$$

Solution. (i) We first note that given any $x_0 \in H$ we have

$$(P(x_0) - x_0, y - P(x_0))_H \ge 0$$
 for every $y \in K$. (1)

This inequality is proved in Exercise 7.4 (ii) for $a(\cdot, \cdot) = (\cdot, \cdot)_H$. Let $x_1, x_2 \in H$. Applying (1) twice we see that

$$\begin{aligned} \|P(x_1) - P(x_2)\|_H^2 &= (P(x_1) - P(x_2), P(x_1) - P(x_2))_H \\ &= (P(x_1) - x_1, P(x_1) - P(x_2))_H + (x_1, P(x_1) - P(x_2))_H \\ &- (P(x_2) - x_2, P(x_1) - P(x_2))_H - (x_2, P(x_1) - P(x_2))_H \\ &\leq (x_1 - x_2, P(x_1) - P(x_2))_H, \end{aligned}$$

thus with Caychy-Schwarz

$$||Px_1 - Px_2||_H^2 \le ||x_1 - x_2||_H ||Px_1 - Px_2||_H,$$

which yields the desired inequality.

(ii) "(\subseteq)": Let $y \in K$. Then $(Px - x, y - Px)_H \ge 0$ for any $x \in H$ by (1).

"(\supseteq)": Let $y \in H \setminus K$. Then, choosing x = y, we have $Py \neq y$ which implies

$$(Py - y, y - Py)_H = -\|Py - y\|_H^2 < 0$$

and shows that y is not element of the set on the right hand side.

Exercise 8.3 A normed space $(X, \|\cdot\|_X)$ is called *strictly convex* if, for every $x, y \in X$ with $x \neq y$ and $\|x\|_X = 1 = \|y\|_X$, there holds

$$\|\lambda x + (1-\lambda)y\|_X < 1$$
 for every $\lambda \in (0,1)$

Let $(X, \|\cdot\|_X)$ be a normed space.

- (i) Prove that if X^* is strictly convex, then for all $x \in X$ there exists a unique $x^* \in X^*$ with $||x^*||_{X^*}^2 = x^*(x) = ||x||_X^2$.
- (ii) Find a counterexample to (i) when X^* is not strictly convex.

Solution. (i) The existence of x^* is given by Satz 4.2.1 and we need to show uniqueness. Given $0 \neq x \in X$, let $x^* \in X^*$ and $y^* \in X^*$ satisfy

$$||x^*||_{X^*}^2 = x^*(x) = ||x||_X^2 = y^*(x) = ||y^*||_{X^*}^2$$

Then

$$\|x\|_X^2 = \frac{1}{2} \left(x^*(x) + y^*(x) \right) = \left(\frac{1}{2} x^* + \frac{1}{2} y^* \right) (x) \le \left\| \frac{1}{2} x^* + \frac{1}{2} y^* \right\|_{X^*} \|x\|_X,$$

hence

$$1 \le \left\| \frac{x^*}{2\|x\|_X} + \frac{y^*}{2\|x\|_X} \right\|_{X^*}$$

If $x^* \neq y^*$ were true, since

$$\left\|\frac{x^*}{\|x\|_X}\right\|_{X^*} = 1 = \left\|\frac{y^*}{\|x\|_X}\right\|_{X^*},$$

then with $\lambda = \frac{1}{2}$ in the definition of strict convexity we would obtain

$$\left\|\frac{x^*}{2\|x\|_X} + \frac{y^*}{2\|x\|_X}\right\|_{X^*} < 1,$$

thus contradicting the previous inequality.

(ii) Consider the space $(\mathbb{R}^2, \|\cdot\|_{\infty})$, where $\|p\|_{\infty} = \max\{|p_1|, |p_2|\}$. Let x = (1, 1). Then, $\|x\|_{\infty} = 1$ and the functionals

$$\begin{aligned} x^* \colon \mathbb{R}^2 \to \mathbb{R}^2, & y^* \colon \mathbb{R}^2 \to \mathbb{R}^2\\ (p_1, p_2) \mapsto p_1 & (p_1, p_2) \mapsto p_2 \end{aligned}$$

both satisfy $x^*(x)=y^*(x)=1=\|x\|_\infty^2$ and

$$\|x^*\|_{X^*} = \sup_{\|p\|_{\infty} \le 1} |x^*(p)| = \sup_{|p_1|, |p_2| \le 1} |p_1| = 1 = \sup_{|p_1|, |p_2| \le 1} |p_2| = \|y^*\|_{X^*}.$$

Exercise 8.4

(i) Let $K \subset \mathbb{R}^2$ be a closed, convex subset. Prove that the set E of all extremal points of K is closed.

- (ii) Is the statement of (i) also true in \mathbb{R}^3 ?
- **Solution.** (i) It is clear that the set E of extremal points of the closed, convex subset $K \subset \mathbb{R}^2$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in E which converges to some $y \in K$. Suppose $y \notin E$. Then there exist distinct points $x_1, x_0 \in K$ and some $0 < \lambda < 1$ such that $\lambda x_1 + (1 - \lambda)x_0 = y$. For any $n \in \mathbb{N}$, the point y_n is extremal and therefore cannot lie on the segment between x_1 and x_0 . Intuitively, the sequence $(y_n)_{n\in\mathbb{N}}$ must approach y from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_n strictly lie on the same side of the the affine line through x_1 and x_0 . By convexity of K, the triangle $D = \operatorname{conv}\{x_1, x_0, y_1\}$ is a subset of K. The arguments above and convergence $y_n \to y$ imply that for $n \in \mathbb{N}$ sufficiently large, y_n is in the interior of D and thus in the interior of K. This however contradicts $y_n \in E \subset \partial K$. We conclude $y \in E$ which proves that E is closed.

(ii) The set of extremal points of a closed, convex subset in \mathbb{R}^3 is not necessarily closed: Let $S = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ and $p_{\pm} = (0, 1, \pm 1)$. The set of extremal points of $\operatorname{conv}(S \cup \{p_+, p_-\})$ is $E = \{p_+, p_-\} \cup S \setminus p_0$, where $p_0 = (0, 1, 0) = \frac{1}{2}p_+ + \frac{1}{2}p_-$.

Exercise 8.5 Let X be vector space and let $K \subset X$ be a convex subset with more than one element.

- (i) Given an extremal subset $M \subset K$ of K, prove that $K \setminus M$ is convex.
- (ii) If $N \subset K$ and $K \setminus N$ are both convex, does it follow that N is extremal?
- (iii) Prove that $y \in K$ is an extremal point of K if and only if $K \setminus \{y\}$ is convex.
- **Solution.** (i) Let $K \subset X$ be convex and $M \subset K$ an extremal subset of K. Suppose, $K \setminus M$ is not convex. Then there are points $x_1, x_0 \in K \setminus M$ such that $x := \lambda x_1 + (1 - \lambda) x_0 \notin K \setminus M$ for some $0 < \lambda < 1$. Since K is convex,

 $x \in K$ and hence $x \in M$. However, this contradicts $x_1, x_0 \notin M$ by definition of extremal subset.

- (ii) No, the interval $K = [-1, 1] \subset \mathbb{R}$, the subset $N = [-1, 0] \subset K$ and the difference $K \setminus N = [0, 1]$ are all convex but N is not an extremal subset of K since $\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0 \in N$ but $1 \notin N$.
- (iii) If $y \in K$ is an extremal point of K, then $\{y\} \subset K$ is an extremal subset of Kand (i) implies that $K \setminus \{y\}$ is convex. Conversely, if $y \in K$ is not an extremal point of K, then by definition there exist $x_0 \in K \setminus \{y\}$, $x_1 \in K$ and some $0 < \lambda < 1$ such that $y = \lambda x_1 + (1 - \lambda) x_0$; since however $\{y\}$ consist of a single point it must also hold that $x_1 \in K \setminus \{y\}$, and thus $K \setminus \{y\}$ is not convex. \Box

Hints to Exercises.

8.1 Define Υ by means of the Minkowski functional for Q (used in the proof of Satz 4.5.1) $p: X \to \mathbb{R}$ given by

$$p(x) = \inf\{\lambda > 0 \mid \frac{1}{\lambda}x \in Q\}.$$

Note that p is sublinear and combine this with the Hahn-Banach theorem.

8.2 Use that for any $y \in K$ any $x_0 \in H$ there holds

$$(Px_0 - x_0, y - Px_0)_H \ge 0,$$

which is special case of the an inequality shown in Exercise 7.4 (ii) with $a(\cdot, \cdot) = (\cdot, \cdot)_H$.

8.4 For (i), show that E is a subset of the boundary ∂K . Argue by contradiction supposing E is not closed. For (ii), draw a picture.