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Exercise 8.1 Let (X, ||-|[x) be a normed space and let ) # Q C X be an open,
convex subset containing the origin. Prove that () can be written as intersection of
open affine half-spaces, namely that there exists a subset T C X* such that

Q=N{reX|f)<1}.

fexr
Solution. We show that the statement holds with
T={feX |[VzeX: f(z) <px)},

where p : X — R is the Minkowski functional for ).
Note first of all that since () is open and contains the origin, there exists r > 0 such
that B,(0) C Q. Thus, 2 € Q with A = 2||z||x and

p(z) < 2|z x for every z € X.

”.

“(Q)”: Let z € Q. Since @ is open, we have p(z) < 1. For every f € T we have
f(z) < p(x) by definition. This proves f(x) < 1 for every f € T.
)”

“(2)” It is equivalent to prove that for every xo ¢ @ there exists f € T with f(xg) > 1.
To this aim we define the functional

0: span({zo}) = R, {l(tzg) =t.
Since @ is convex and contains the origin, we have p(xy) > 1. In particular, we have

VE>0: L(teg) =t <tp(xo) = p(txy),

The Hahn-Banach theorem implies that there exists a linear continuous functional
f: X — R which agrees with ¢ on span({zo}) with f(z) < p(z) < 2|z|x, and
therefore f € Y. Since f(zo) = 1, the claim follows. O

Exercise 8.2 Let (H,(-,-)y) be a Hilbert space and let ) # K C H be a closed,

convex subset. Denote by P: H — K be the projection operator onto K which maps
x € H to the unique point P(z) € K with ||z — Px| g = dist(z, K) constructed in
Exercise 7.7 (ii).

(i) For every xq,x9 € H prove the inequality

[1P(x1) = P(z2)lla < 2y — 22la-
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(ii) Prove that

K= (\{yeH|(z—Px),P(x)—y)u = 0}.

zeH

Solution. (i) We first note that given any zo € H we have
(P(xg) — w0,y — P(x))n >0 for every y € K. (1)

This inequality is proved in Exercise 7.4 (ii) for a(-,-) = (-,-)g. Let 1,29 € H.
Applying (1) twice we see that

|1P(21) — P(x2) |13 = (P(21) — P(x2), P(21) — P(22))u
= (P(x1) — @1, P(z1) — P(x2))m + (1, P(21) — P(22))m
— (P(x2) — @2, P(21) — P(x2)
< (21 — 29, P(z1) — P(x2))m,

thus with Caychy-Schwarz
[Pay — Paz||3 < |la1 — zol|ul| Par — Pasl|a,
which yields the desired inequality.
(ii)) “(€)": Let y € K. Then (Px — z,y — Pz)y > 0 for any « € H by (1).
“(2)”: Let y € H\ K. Then, choosing = = y, we have Py # y which implies
(Py —y,y — Py)u = —[|Py —yll} <0

and shows that y is not element of the set on the right hand side. O]

Exercise 8.3 A normed space (X, ||-||x) is called strictly convez if, for every xz,y € X
with x # y and ||z][x =1 = ||y||x, there holds

Az + (1 —Nyllx <1 forevery A € (0,1)

Let (X, ||-|lx) be a normed space.

(i) Prove that if X* is strictly convex, then for all z € X there exists a unique
r* € X* with ||z*|%. = z*(z) = ||lz|%.

(ii) Find a counterexample to (i) when X* is not strictly convex.
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Solution. (i) The existence of z* is given by Satz 4.2.1 and we need to show
uniqueness. Given 0 # x € X, let * € X* and y* € X* satisfy

l2*[I%- = 2*(2) = 2]k = y"(z) = |y’ lI%--
Then
ol = 5 (" (@) + 57 @) = (557 + 597 @) < |32+ 507 lellx.
hence
T* y*
] T el IR
2||zllx - 2fflx lx-

If * # y* were true, since

]l x |l 2l x |l

then with A = % in the definition of strict convexity we would obtain

s+ 7
20zllx  2fzllx

<1,
X*

thus contradicting the previous inequality.

(ii) Consider the space (R? ||||o), Where ||p|loe = max{|pi],|p2|}. Let z = (1,1).
Then, ||z||« = 1 and the functionals

z*: R? = R?, y*: R? —» R?
(p1,p2) = p1 (p1,p2) = P2

both satisfy z*(z) = y*(z) = 1 = ||z||% and

]

x-= sup [2°(p)|= sup |pi|=1= sup |pf =[]y
llplloo <1 Ip1l,lp2|<1 Ip1],|lp2|<1

X*-

Exercise 8.4

(i) Let K C R? be a closed, convex subset. Prove that the set F of all extremal
points of K is closed.
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(i)

Is the statement of (i) also true in R3?

Solution. (i) It is clear that the set E of extremal points of the closed, convex

subset K C R? must be a subset of the boundary 0K of K because the center
of every ball contained in K is a convex combination of other points in this ball.

Let (yn)neny be a sequence in E which converges to some y € K. Suppose
y ¢ E. Then there exist distinct points z1,29 € K and some 0 < A < 1
such that Az; + (1 — AN)zg = y. For any n € N, the point y, is extremal
and therefore cannot lie on the segment between z; and xy. Intuitively, the
sequence (¥, )nen must approach y from “above” or “below” this segment. By
restriction to a subsequence, we can assume that all y,, strictly lie on the same
side of the the affine line through z; and zy. By convexity of K, the triangle
D = conv{z,xg,y1} is a subset of K. The arguments above and convergence
yn — vy imply that for n € N sufficiently large, vy, is in the interior of D and
thus in the interior of K. This however contradicts y, € £ C 0K. We conclude
y € F which proves that E is closed.

Yr e
D

a5 Yy To

The set of extremal points of a closed, convex subset in R? is not necessarily
closed: Let S = {(z,y,0) € R® | 22 +y?> = 1} and px = (0,1,41). The
set of extremal points of conv(S U {py,p_}) is E = {py,p_} US \ po, where
p02(07170):%p++%p—' u

Exercise 8.5 Let X be vector space and let K C X be a convex subset with more
than one element.

(1)
(i)
(i)

Given an extremal subset M C K of K, prove that K \ M is convex.
If N C K and K \ N are both convex, does it follow that N is extremal?

Prove that y € K is an extremal point of K if and only if K \ {y} is convex.

Solution. (i) Let K C X be convex and M C K an extremal subset of K.

Suppose, K \ M is not convex. Then there are points z;,29 € K \ M such
that z := Axy + (1 — N)azg ¢ K\ M for some 0 < A < 1. Since K is convex,
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(i)

(iii)

x € K and hence x € M. However, this contradicts x1,z9 ¢ M by definition of
extremal subset.

No, the interval K = [—1,1] C R, the subset N = [—1,0] C K and the difference
K\ N = ]0,1] are all convex but N is not an extremal subset of K since
Lo(-1)+1-1=0eNbut1¢N.

2

If y € K is an extremal point of K, then {y} C K is an extremal subset of K
and (i) implies that K \ {y} is convex. Conversely, if y € K is not an extremal
point of K, then by definition there exist o € K \ {y}, 1 € K and some
0 < A < 1 such that y = Azy + (1 — A)zp; since however {y} consist of a single
point it must also hold that x; € K \ {y}, and thus K \ {y} is not convex. [

Figure 1: Picture for Exercise 8.4 (ii)
2
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Hints to Exercises.

8.1 Define T by means of the Minkowski functional for @) (used in the proof of Satz
4.5.1) p: X — R given by

p(x) =inf{\ > 0] yz € Q}.

Note that p is sublinear and combine this with the Hahn-Banach theorem.

8.2 Use that for any y € K any xg € H there holds
(Pzo — 20,y — Pxo)ur > 0,

which is special case of the an inequality shown in Exercise 7.4 (ii) with
CL(-, ) — (.7 )H

8.4 For (i), show that F is a subset of the boundary 0K. Argue by contradiction
supposing FE is not closed. For (ii), draw a picture.



