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Exercise 9.1 Let /> be the space of real-valued bounded sequences and let ¢ be the
subspace of converging sequences. Consider the functional

(i)

(i)

lim:¢c— R lim(z,) = lim ;,.

Prove that it extends to a continuous linear functional lim : /*° — R with norm
|lim|| = 1 and that there holds

liminf z,, < lim(z,,) < limsup z,.
n—00 n—00

Use such construction to prove that the space ¢! is not reflexive.

Solution. (i) Trivially in ¢ there holds lim,,_, =, < limsup,,_, ., x, and since for

every a € R, and (2y,)nen, (Yn)nen € £ there holds

limsup(azx,) = alimsup z,,

n—oo n—oo
lim sup(z, + y,) < limsup z,, + lim sup y,,
n—oo n—oo n—oo

we have that the functional limsup : ¢* — R is sublinear. Consequently
by the Hahn-Banach theorem we deduce the existence of a linear functional
lim : /> — R with

lim(x,) < limsup x,,

n—o0

for every (z,,)neny C €°°. To see that the opposite inequality with “lim inf” holds,
it suffices note that, by linearity, there holds

lim(z,) = —lim(—=z,) > —limsup(—=z,) = liminf(z,).

n—oo n—oo

To prove that lim is continuous with norm 1, note that, on the one hand,
lim : ¢ — R has norm 1 and so [|lim|| > 1. On the other hand, if (z,)nen C €
is any sequence with ||(z,,)[/¢~ = sup,ey |%s| = 1, then

—-1< lirrlr_lglf(xn) < lim(z,) < limsup(z,) <1

n—o0

from which [|lim]| < 1 follows.

It suffices to show that [im does not corresponds to any sequence in ¢! via the
canonical injection ¢ < (£1)** = (£>°)*.

Suppose by contradiction that (g, ),en is the corresponding sequence. Since
lim # 0 such sequence must to be different from the zero sequence; At the same
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time however [im vanishes when tested against sequences in ¢! since they are
bounded and convergent with zero limit. Thus testing lim against (z;,)nen (recall
that ¢* C £>°) would give

n=1

and so (r,)neny must be the zero sequence. The contradiction is reached. O

Exercise 9.2 Let (X, ||-]|x) and (Y, ||-||y) be normed spaces and let T: X — Y be a
linear operator. Prove that the following statements are equivalent.

(i) T is continuous.

(ii) T is weak-weak sequentially continuous, namely if (z,),en is any weakly con-
verging sequence X, then T'z,, is weakly convergent in Y.

Solution. “(i) = (ii)” Let (X, ||-||x) and (Y, ||-||y) be normed spaces. Let (z,)nen
be a sequence in X such that z,, - x for some # € X. Let f € Y* be arbitrary. If
T: X — Y is a continuous linear operator, then foT € X* and weak convergence of
(n)nen implies

lim f(Te,) = lim (f o T)(x,) = (f o T)(z) = f(T)

n—00 n—oo

which proves weak convergence of (Tx,)nen in Y.

“(ii) = (i)” If the linear operator T: X — Y is not continuous, then there exists
a sequence (T, )ney in X such that ||z,|x < 1 and ||Tx,|ly > n? for every n € N.
Then 2z, — 0 in X (in particular weakly) but (T'(£2;,))nen is unbounded in Y and
therefore cannot be weakly convergent (Satz 4.6.1.). O

Exercise 9.3 Let (X, [|-]x) be a finite-dimensional normed space. Prove that then
strong and weak topologies coincide, namely that a sequence (z,)neny € X is weakly
convergent if and only if it is strongly convergent.

Solution. Clearly we only need to prove that weak convergence implies strong
convergence. Let e, ..., eq be a basis for X. and let €], ..., e} be the corresponding
dual basis. Since every norm in a finite-dimensional space is equivalent to the
Euclidean norm, we may as well suppose, having written x = Zle x'e; that

d 1/2
lallx = (Z |x%|2) |

=1
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Note that e; € X™ since for every x € X we may write x = Zle z'e; for some zF € R
and so |ej(z)] = [2°| < [|z]|x.

If (2 )nen is a sequence in X such that x, ~ x for some z € X as n — oo, then

Vke{l,....d}: lim 2* = lim ef(z,) = ef(z) = 2~

n—oo n—oo

This implies ||z, — x||x — 0. O

Exercise 9.4 Let (H,(-,-)) be a real Hilbert space and let (e,),en € X be an
orthonormal system for H, that is, a countable set of elements so that

(ej,er) = 0;, for every j, k € N.

(i) Prove e, — 0 as n — oc.

(ii) Suppose now that (e, )nen forms a Hilbert basis for H, i.e. that span{e, : n € N}
is a dense subspace of H. Prove that for every x € H there holds

T = i(x, €n)en, (1)

and that Parseval’s Identity holds:

s = ( ) |<x7en>|2)1/2. @)

Solution. We prove first Bessel’s inequality. Let + € H and N € N. Define

N

TN =T — Z(en,x>en.

n=1

Then there holds zy L e; for every j € {1,2,..., N} and so by using the ortho-
normality relations we deduce

N N
Yol en)? < llawllf + Y[, en)?
n=1 n=1
N 2
= H‘%NH?LI + Z<x>€n>en
n=1 H
N 2
= oy + Y _(z,en)en| = ||zl
n=1 H
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(i) By Bessel’s inequality

oo
(2, en)[* < |||,

>

n=0

thus it must hold (z,e,) — 0 as n — oo for any = € H.

(ii) Define sy = Zgzl(x,er)en. By Bessel’s inequality the sequence (sy)yen is
Cauchy and thus convergent in H. By orthonormality we have

(x — sy, en) =0 forn <N,
and thus, passing to the limit in N and by linearity, it follows that
(x —s,v) =0 for every v € span{e, : n € N}.

but since span{e, : n € N} is dense in X, it follows that (x — s,y) = 0 for every
y € X, and thus that (1) holds. Finally, Parseval’s identity (2) can be deduced
from (1), the continuity of the norm and orthonormality:

o0

lallyy = lim [snlli = 3| e
n=1

Exercise 9.5 Let (H, (+,-)g) be a real Hilbert space.

(i) Prove that if the sequence (z,)neny € X converges weakly to x and ||x,| g —
||z|| &, then it converges strongly to .

(ii) Suppose (x,)nen converges weakly to x and (y,)neny € X converges strongly to
y. Prove that (z,,y.)g — (z,9)n-

(iii) Suppose x € H with ||z||g < 1, prove that there exists a sequence (x,),en in H
satisfying ||z,||z = 1 for all n € N and z,, ~ = as n — oo.

(iv) Prove the Riemann-Lebesque Lemma: Let f,,: [0,27] — R given by f,,(t) = sin(nt)
for n € N, then f, - 0 in L((0,27),R) as n — oo.

Solution. (i) Since (x,-)y € H*, weak convergence implies (z,2,)g — (z,2)g =
|lz||3 as n — oo and we have

lon — 2l = (w0 — 2,20 — @) = ll2allly — 2z, 20)n + ||z == 0.
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(ii) Weak convergence z,, ~ x implies that (,,y)g — (,y)x as n — oo and that
|zn||g < C for some constant C' > 0 uniformly in n. Thus,

’(xnayn>H - (x>y)H‘ = ‘(xmyn - y)H + (mmy)H - (t%Q)H‘
< Cllyn =yl + | (@, v)ir = (2,9)u] == 0.

(iii) If z = 0, then any orthonormal system converges weakly to = by Exercise 9.4.
If x # 0, then an orthonormal system (e,)neny of H with e; = z/||z||y can be
constructed via the Gram-Schmidt algorithm. For n € N, let

wn =2+ (1=l )ens

Then, since © L e,11, we have ||z, || = ||z[|}; + (1 — [|=[%) = 1 for every n € N,
and since e, 1 ~ 0 by Exercise 9.4 (i), z,, ~ .

(iv) Let f,: [0,27] — R be given by f,(t) = sin(nt) for n € N. Then, since for any
m,n € N we have

/027r sin(mt) sin(nt) dt = ; /027r cos((m - n)t) - Cos((m + n)t) dt

_{O, if m #n,

m, if m =n,

we deduce that (f,,/\/7),cy is an orthonormal system for L*([0,27]), so by
Exercise 9.4 (i) f, — 0 as n — oc.

]
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Hints to Exercises.

9.1 For (i), one inequality follows from Hahn-Banach; for the other one argue by
contradiction.

9.4 Use (after proving it) Bessel’s inequality: 0% o|(z, e,)u]? < ||z||%-

n=0

9.5 For (iii), use Exercise 9.4. Recall that in every Hilbert space the Graham-Schmidt
process allows for construction of orthonormal systems.



