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Exercise 9.1 Let `∞ be the space of real-valued bounded sequences and let c be the
subspace of converging sequences. Consider the functional

lim : c→ R lim(xn) = lim
n→∞

xn.

(i) Prove that it extends to a continuous linear functional lim : `∞ → R with norm
‖lim‖ = 1 and that there holds

lim inf
n→∞

xn ≤ lim(xn) ≤ lim sup
n→∞

xn.

(ii) Use such construction to prove that the space `1 is not reflexive.

Solution. (i) Trivially in c there holds limn→∞ xn ≤ lim supn→∞ xn and since for
every α ∈ R, and (xn)n∈N, (yn)n∈N ∈ `∞ there holds

lim sup
n→∞

(αxn) = α lim sup
n→∞

xn,

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn,

we have that the functional lim sup : `∞ → R is sublinear. Consequently
by the Hahn-Banach theorem we deduce the existence of a linear functional
lim : `∞ → R with

lim(xn) ≤ lim sup
n→∞

xn,

for every (xn)n∈N ⊂ `∞. To see that the opposite inequality with “lim inf” holds,
it suffices note that, by linearity, there holds

lim(xn) = −lim(−xn) ≥ − lim sup
n→∞

(−xn) = lim inf
n→∞

(xn).

To prove that lim is continuous with norm 1, note that, on the one hand,
lim : c→ R has norm 1 and so ‖lim‖ ≥ 1. On the other hand, if (xn)n∈N ⊂ `∞

is any sequence with ‖(xn)‖`∞ = supn∈N |xn| = 1, then

−1 ≤ lim inf
n→∞

(xn) ≤ lim(xn) ≤ lim sup
n→∞

(xn) ≤ 1

from which ‖lim‖ ≤ 1 follows.

(ii) It suffices to show that lim does not corresponds to any sequence in `1 via the
canonical injection `1 ↪→ (`1)∗∗ = (`∞)∗.

Suppose by contradiction that (xn)n∈N is the corresponding sequence. Since
lim 6≡ 0 such sequence must to be different from the zero sequence; At the same
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time however lim vanishes when tested against sequences in `1 since they are
bounded and convergent with zero limit. Thus testing lim against (xn)n∈N (recall
that `1 ⊂ `∞) would give

0 = lim(xn) =
∞∑
n=1
|xn|2,

and so (xn)n∈N must be the zero sequence. The contradiction is reached.

Exercise 9.2 Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces and let T : X → Y be a
linear operator. Prove that the following statements are equivalent.

(i) T is continuous.

(ii) T is weak-weak sequentially continuous, namely if (xn)n∈N is any weakly con-
verging sequence X, then Txn is weakly convergent in Y .

Solution. “(i) ⇒ (ii)” Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces. Let (xn)n∈N
be a sequence in X such that xn w

⇁ x for some x ∈ X. Let f ∈ Y ∗ be arbitrary. If
T : X → Y is a continuous linear operator, then f ◦ T ∈ X∗ and weak convergence of
(xn)n∈N implies

lim
n→∞

f(Txn) = lim
n→∞

(f ◦ T )(xn) = (f ◦ T )(x) = f(Tx)

which proves weak convergence of (Txn)n∈N in Y .

“(ii) ⇒ (i)” If the linear operator T : X → Y is not continuous, then there exists
a sequence (xn)n∈N in X such that ‖xn‖X ≤ 1 and ‖Txn‖Y ≥ n2 for every n ∈ N.
Then 1

n
xn → 0 in X (in particular weakly) but (T ( 1

n
xn))n∈N is unbounded in Y and

therefore cannot be weakly convergent (Satz 4.6.1.).

Exercise 9.3 Let (X, ‖·‖X) be a finite-dimensional normed space. Prove that then
strong and weak topologies coincide, namely that a sequence (xn)n∈N ⊆ X is weakly
convergent if and only if it is strongly convergent.

Solution. Clearly we only need to prove that weak convergence implies strong
convergence. Let e1, . . . , ed be a basis for X. and let e∗1, . . . , e∗d be the corresponding
dual basis. Since every norm in a finite-dimensional space is equivalent to the
Euclidean norm, we may as well suppose, having written x = ∑d

i=1 x
iei that

‖x‖X =
(

d∑
i=1
|xi|2

)1/2

.
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Note that e∗k ∈ X∗ since for every x ∈ X we may write x = ∑d
i=1 x

iei for some xk ∈ R
and so |e∗k(x)| = |xi| ≤ ‖x‖X .

If (xn)n∈N is a sequence in X such that xn w
⇁ x for some x ∈ X as n→∞, then

∀k ∈ {1, . . . , d} : lim
n→∞

xkn = lim
n→∞

e∗k(xn) = e∗k(x) = xk.

This implies ‖xn − x‖X → 0.

Exercise 9.4 Let (H, 〈·, ·〉) be a real Hilbert space and let (en)n∈N ⊆ X be an
orthonormal system for H, that is, a countable set of elements so that

〈ej, ek〉 = δjk for every j, k ∈ N.

(i) Prove en w
⇁ 0 as n→∞.

(ii) Suppose now that (en)n∈N forms a Hilbert basis for H, i.e. that span{en : n ∈ N}
is a dense subspace of H. Prove that for every x ∈ H there holds

x =
∞∑
n=1
〈x, en〉en, (1)

and that Parseval’s Identity holds:

‖x‖H =
( ∞∑
n=1
|〈x, en〉|2

)1/2

. (2)

Solution. We prove first Bessel’s inequality. Let x ∈ H and N ∈ N. Define

xN := x−
N∑
n=1
〈en, x〉en.

Then there holds xN ⊥ ej for every j ∈ {1, 2, . . . , N} and so by using the ortho-
normality relations we deduce

N∑
n=1
|〈x, en〉|2 ≤ ‖xN‖2

H +
N∑
n=1
|〈x, en〉|2

= ‖xN‖2
H +

∥∥∥∥∥
N∑
n=1
〈x, en〉en

∥∥∥∥∥
2

H

=
∥∥∥∥∥xN +

N∑
n=1
〈x, en〉en

∥∥∥∥∥
2

H

= ‖x‖2
H .
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(i) By Bessel’s inequality
∞∑
n=0
|〈x, en〉|2 ≤ ‖x‖2

H ,

thus it must hold 〈x, en〉 → 0 as n→∞ for any x ∈ H.

(ii) Define sN = ∑N
n=1〈x, en〉en. By Bessel’s inequality the sequence (sN)N∈N is

Cauchy and thus convergent in H. By orthonormality we have

〈x− sN , en〉 = 0 for n ≤ N,

and thus, passing to the limit in N and by linearity, it follows that

〈x− s, v〉 = 0 for every v ∈ span{en : n ∈ N}.

but since span{en : n ∈ N} is dense in X, it follows that 〈x− s, y〉 = 0 for every
y ∈ X, and thus that (1) holds. Finally, Parseval’s identity (2) can be deduced
from (1), the continuity of the norm and orthonormality:

‖x‖2
H = lim

N→∞
‖sN‖2

X =
∞∑
n=1
|〈x, en〉|2.

Exercise 9.5 Let (H, (·, ·)H) be a real Hilbert space.

(i) Prove that if the sequence (xn)n∈N ⊆ X converges weakly to x and ‖xn‖H →
‖x‖H , then it converges strongly to x.

(ii) Suppose (xn)n∈N converges weakly to x and (yn)n∈N ⊆ X converges strongly to
y. Prove that (xn, yn)H → (x, y)H .

(iii) Suppose x ∈ H with ‖x‖H ≤ 1, prove that there exists a sequence (xn)n∈N in H
satisfying ‖xn‖H = 1 for all n ∈ N and xn w

⇁ x as n→∞.

(iv) Prove the Riemann-Lebesgue Lemma: Let fn : [0, 2π]→ R given by fn(t) = sin(nt)
for n ∈ N, then fn w

⇁ 0 in L2((0, 2π),R) as n→∞.

Solution. (i) Since (x, ·)H ∈ H∗, weak convergence implies (x, xn)H → (x, x)H =
‖x‖2

H as n→∞ and we have

‖xn − x‖2
H = (xn − x, xn − x)H = ‖xn‖2

H − 2(x, xn)H + ‖x‖2
H

n→∞−−−→ 0.
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(ii) Weak convergence xn w
⇁ x implies that (xn, y)H → (x, y)H as n→∞ and that

‖xn‖H ≤ C for some constant C > 0 uniformly in n. Thus,∣∣∣(xn, yn)H − (x, y)H
∣∣∣ =

∣∣∣(xn, yn − y)H + (xn, y)H − (x, y)H
∣∣∣

≤ C‖yn − y‖H +
∣∣∣(xn, y)H − (x, y)H

∣∣∣ n→∞−−−→ 0.

(iii) If x = 0, then any orthonormal system converges weakly to x by Exercise 9.4.
If x 6= 0, then an orthonormal system (en)n∈N of H with e1 = x/‖x‖H can be
constructed via the Gram-Schmidt algorithm. For n ∈ N, let

xn := x+
(√

1− ‖x‖2
H

)
en+1

Then, since x ⊥ en+1, we have ‖xn‖2 = ‖x‖2
H + (1− ‖x‖2

H) = 1 for every n ∈ N,
and since en+1

w
⇁ 0 by Exercise 9.4 (i), xn w

⇁ x.

(iv) Let fn : [0, 2π]→ R be given by fn(t) = sin(nt) for n ∈ N. Then, since for any
m,n ∈ N we have∫ 2π

0
sin(mt) sin(nt) dt = 1

2

∫ 2π

0
cos
(
(m− n)t

)
− cos

(
(m+ n)t

)
dt

=

0, if m 6= n,

π, if m = n,

we deduce that (fn/
√
π)n∈N is an orthonormal system for L2([0, 2π]), so by

Exercise 9.4 (i) fn w
⇁ 0 as n→∞.
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Hints to Exercises.

9.1 For (i), one inequality follows from Hahn-Banach; for the other one argue by
contradiction.

9.4 Use (after proving it) Bessel’s inequality: ∑∞n=0|(x, en)H |2 ≤ ‖x‖2
H .

9.5 For (iii), use Exercise 9.4. Recall that in every Hilbert space the Graham-Schmidt
process allows for construction of orthonormal systems.
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