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Exercise 11.1 Let (X, ‖·‖X), (Y, ‖·‖Y ) and (Z, ‖·‖Z) be normed spaces. We denote
by

K(X, Y ) = {T ∈ L(X, Y ) | T (B1(0)) ⊂ Y compact}

the set of compact operators between X and Y . Prove the following statements.

(i) T ∈ L(X, Y ) is a compact operator if and only if every bounded sequence
(xn)n∈N in X has a subsequence (xnk

)k∈N such that (Txnk
)k∈N is convergent in

Y .

(ii) If (Y, ‖·‖Y ) is complete, then K(X, Y ) is a closed subspace of L(X, Y ).

(iii) Let T ∈ L(X, Y ). If its range T (X) ⊂ Y is finite-dimensional, then T ∈
K(X, Y ).

(iv) Let T ∈ L(X, Y ) and S ∈ L(Y, Z). If T or S is a compact operator, then S ◦ T
is a compact operator.

(v) If X is reflexive, then any operator T ∈ L(X, Y ) which maps weakly convergent
sequences to strongly convergent sequences, that is

xn
w
⇁ x in X =⇒ Txn → x in Y,

is a compact operator.

Solution. (i) “(⇒)”: Let T ∈ L(X, Y ) be a compact operator. Let (xn)n∈N be a
bounded sequence in X. Then there exists M > 0 such that ‖xn‖X < M for
all n ∈ N. In particular, 1

M
xn ∈ B1(0) ⊂ X and 1

M
Txn ∈ T (B1(0)) for every

n ∈ N. Since T (B1(0)) ⊂ Y is compact, a subsequence ( 1
M
Txnk

)k∈N converges
in Y . Hence, (Txnk

)k∈N is also a convergent sequence.

“(⇐)”: Conversely, let (yn)n∈N be any sequence in T (B1(0)). For every n ∈ N
there exists y′n ∈ T (B1(0)) such that ‖yn − y′n‖Y ≤ 1

n
. Since there exists a

sequence (x′n)n∈N in B1(0) ⊂ X such that Tx′n = y′n, a subsequence y′nk
→ y

converges in Y as k →∞ by assumption. Since

‖ynk
− y‖Y ≤ ‖ynk

− y′nk
‖+ ‖y′nk

− y‖Y → 0 as k →∞,

we conclude that a subsequence of (yn)n∈N converges. Being closed, T (B1(0))
must contain the limit y which proves that T (B1(0)) is compact, i. e. T is a
compact operator.
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(ii) Part (ii) and linearity of the limit imply that the set of compact operators
K(X, Y ) ⊂ L(X, Y ) is a linear subspace. To prove that this subspace is closed,
let (Tk)k∈N be a sequence in K(X, Y ) such that ‖Tk − T‖L(X,Y ) → 0 for some
T ∈ L(X, Y ) as k →∞. To show T ∈ K(X, Y ), consider a bounded sequence
(xn)n∈N in X and choose the nested, unbounded subsets N ⊃ Λ1 ⊇ Λ2 ⊇ . . . such
that (Tkxn)n∈Λk

is convergent in Y with limit point yk ∈ Y . This is possible
by (i) since Tk is a compact operator for every k ∈ N. Let Λ ⊂ N be the
corresponding diagonal sequence (i. e. the k-th number in Λ is the k-th number
in Λk). By continuity of ‖·‖Y , we can estimate

‖yk − ym‖Y = lim
Λ3n→∞

‖Tkxn − Tmxn‖Y ≤ ‖Tk − Tm‖L(X,Y ) sup
n∈Λ
‖xn‖X

for any k,m ∈ N. Since (Tk)k∈N is convergent in L(X, Y ), we conclude that
(yk)k∈N is a Cauchy sequence in Y . Since (Y, ‖·‖Y ) is assumed to be complete,
yk → y for some y ∈ Y as k →∞. It then suffices to prove the following.

Claim. The sequence (Txn)n∈Λ converges to y.

Proof. Let ε > 0. Choose a fixed κ ∈ N such that

‖T − Tκ‖L(X,Y ) < ε ‖yκ − y‖Y ≤ ε.

Since Tκxn → yκ as Λ 3 n → ∞, there exists N ∈ Λ such that for every
Λ 3 n ≥ N ‖Tκxn − yκ‖ ≤ ε

3 . Finally, the claim follows from the estimate

‖Txn − y‖Y ≤ ‖Txn − Tκxn‖Y + ‖Tκxn − yκ‖Y + ‖yκ − y‖Y
≤ ‖T − Tκ‖L(X,Y ) sup

n∈Λ
‖xn‖X + ‖Tκxn − yκ‖Y + ‖yκ − y‖Y

< 3ε sup
n∈Λ
‖xn‖X .

which holds for every Λ 3 n ≥ N . Since ε is arbitrary, the claim follows.

(iii) The image of B1(0) under T ∈ L(X, Y ) is bounded. If T (X) ⊂ Y is of finite
dimension, then so is so is T (X), and T (B1(0)) is compact as a bounded, closed
subset of T (X).

(iv) Let T ∈ L(X, Y ) and S ∈ L(Y, Z). Let (xn)n∈N be any bounded sequence in X.

Suppose T is a compact operator. Then, a subsequence (Txnk
)k∈N is convergent

in Y by (i). Since S is continuous, (STxnk
)k∈N is convergent in Z, which by (i)

proves that S ◦ T is a compact operator.
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Suppose S is a compact operator. Since T is continuous, the sequence (Txn)n∈N
is bounded in Y . Then, a subsequence (STxnk

)k∈N is convergent in Z by (i),
which again proves that S ◦ T is a compact operator.

(v) Let (xn)n∈N be any bounded sequence in X. Since X is reflexive, a subse-
quence (xnk

)k∈N converges weakly in X by the Eberlein–Šmulian theorem. Then,
(Txnk

)k∈N is norm-convergent in Y by assumption and (i) implies that T is a
compact operator.

Exercise 11.2 Let (fn)n∈N be a sequence in C1([0, 1],R) so that, for every n ∈ N,

fn(0) = a and sup
n∈N
‖f ′n‖L∞((0,1)) ≤ C,

for some a and C. Show that (fn)n∈N has a uniformly convergent subsequence.

Solution. For every n ∈ N and x ∈ [0, 1], we have

|fn(x)| ≤ |fn(0)|+
∫ x

0
|f ′n(t)|dt ≤ |a|+ C,

Consequently, (fn)n∈N is uniformly bounded in C0([0, 1],R). It is also equicontinuous:

|fn(x)− fn(y)| =
∣∣∣∣∫ x

y
f ′n(t) dt

∣∣∣∣ ≤ C|x− y|,

By the Arzelà–Ascoli theorem, (fn)n∈N has a uniformly convergent subsequence.

Exercise 11.3 Let m ∈ N and let Ω ⊂ Rm be a bounded open subset. Given
k ∈ L2(Ω× Ω,C), consider the linear operator K : L2(Ω)→ L2(Ω,C) defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y) dy

(i) Prove that K is well-defined, i. e. Kf ∈ L2(Ω,C) for any f ∈ L2(Ω,C).

(ii) Prove that K is a compact operator.

(iii) Find an explicit expression for the adjoint K∗ : L2(Ω,C) → L2(Ω,C) (recall
that for complex-valued function, the scalar product in L2(Ω,C) is (f, g)L2 =∫

Ω fgdx).
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Solution. (i) Let f ∈ L2(Ω,C). Then Hölder’s inequality and Tonelli’s theorem
imply∫

Ω
|(Kf)(x)|2 dx =

∫
Ω

∣∣∣∣∫
Ω
k(x, y)f(y) dy

∣∣∣∣2 dx ≤ ∫
Ω

(∫
Ω
|k(x, y)f(y)| dy

)2
dx

≤
∫

Ω

(∫
Ω
|k(x, y)|2 dy

)
‖f‖2

L2(Ω) dx = ‖k‖2
L2(Ω×Ω)‖f‖2

L2(Ω).

Since k ∈ L2(Ω× Ω,C) by assumption, ‖Kf‖L2(Ω) ≤ ‖k‖L2(Ω×Ω)‖f‖L2(Ω) <∞
follows.

(ii) Being a Hilbert space, L2(Ω) is reflexive. Exercise 11.1 (e) implies that
K : L2(Ω,C)→ L2(Ω,C) is a compact operator if K maps weakly convergent
sequences to norm-convergent sequences.

Let (fn)n∈N be a sequence in L2(Ω,C) such that fn w
⇁ f as n → ∞ for some

f ∈ L2(Ω,C). Since k ∈ L2(Ω× Ω,C), Fubini’s theorem implies that k(x, ·) ∈
L2(Ω,C) for almost every x ∈ Ω. Weak convergence therefore implies

(Kfn)(x) =
〈
k(x, ·), fn

〉
L2(Ω)

n→∞−−−→
〈
k(x, ·), f

〉
L2(Ω)

= (Kf)(x)

for almost every x ∈ Ω. As weakly convergent sequence, (fn)n∈N is bounded:
there exists C ∈ R such that ‖fn‖L2(Ω) ≤ C for every n ∈ N. By Hölder’s
inequality,

|(Kfn)(x)| ≤
∫

Ω
|k(x, y)fn(y)| dy ≤ ‖k(x, ·)‖L2(Ω)‖fn‖L2(Ω) ≤ C‖k(x, ·)‖L2(Ω).

The assumption k ∈ L2(Ω× Ω) and Fubini’s theorem imply that the function
x 7→ C‖k(x, ·)‖L2(Ω) is in L2(Ω,C). Thus, (Kfn)(x) is dominated by a function
in L2(Ω,C). Since (Kfn)(x) converges pointwise for almost every x ∈ Ω to a
function in L2(Ω,C), the dominated convergence theorem implies L2-convergence
‖Kfn −Kf‖L2(Ω) → 0.

(iii) For f, g ∈ L2(Ω,C) using repeatedly Fubini’s theorem we compute:

(Kf, g)L2 =
∫

Ω
Kf(x)g(x)dx

=
∫

Ω

(∫
Ω
k(x, y)f(y)dy

)
g(x)dx

=
∫

Ω×Ω
k(x, y)g(x)f(y)dxdy

=
∫

Ω
f(y)

(∫
Ω
k(x, y)g(x)dx

)
dy

=
∫

Ω
f(y)

(∫
Ω
k(x, y)g(x)dx

)
dy = (f,K∗g)L2 ,
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that is,

K∗g(x) =
∫

Ω
k(y, x)g(y)dy.

Exercise 11.4 Let `pC denote the space of C-valued sequences of summable p-th
power, namely

`pC :=
{
x : N→ C :

∑
n∈N
|xn|p <∞

}
,

where as usual we write xn = x(n). The space is endowed with its standard Banach
norm ‖·‖`pC . Given a ∈ `∞C we define the operator T : `2

C → `2
C by (Tx)n = anxn.

(i) Prove that T ∈ L(`2
C, `

2
C) and compute its operator norm.

(ii) Prove that T is self-adjoint if and only if an ∈ R for all n ∈ N.

(iii) Prove that T is compact if and only if lim
n→∞

an = 0.

Solution. (i) Given a ∈ `∞C , let (Tx)n = anxn for x ∈ `2
C. We obtain ‖T‖ ≤ ‖a‖`∞C

from

‖Tx‖2
`2C

=
∑
n∈N
|anxn|2 ≤ ‖a‖2

`∞C
‖x‖2

`2C
.

Given any k ∈ N let ek = (0, . . . , 0, 1, 0, . . .) ∈ `2
C, where the 1 is at k-th position.

Then, ‖Tek‖`2C = |ak| = |ak|‖ek‖`2C implies ‖T‖ ≥ |ak|. Since k ∈ N is arbitrary,
‖T‖ ≥ ‖a‖`∞C follows. Hence ‖T‖ = ‖a‖`∞C .

(ii) The adjoint operator T ∗ of T is given by (T ∗y)n = anyn for y ∈ `2
C because

∀x, y ∈ `2
C (x, T ∗y)`2C = (Tx, y)`2C =

∑
n∈N

anxnyn =
∑
n∈N

xnanyn.

and we conclude T = T ∗ ⇔ an = an ∀n ∈ N.

(iii) Let T ∈ L(`2
C, `

2
C) and ek ∈ `2

C be as in (i). Being an orthonormal system of
the Hilbert space `2

C, the sequence (en)n∈N converges weakly to zero. If T is
a compact operator, then |an| = ‖Ten‖`2C → 0 as n → ∞ as a consequence of
Exercise 11.1 (v).

Conversely, let (an)n∈N be a sequence in C such that an → 0 as n → ∞ and
let T ∈ L(`2

C, `
2
C) be the corresponding multiplication operator. Let (xk)k∈N,
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xk = (xk,n)n∈N be any bounded sequence in `2
C and C > 0 a constant such that

‖xk‖`2C ≤ C for every k ∈ N. Since `2
C is reflexive, there exists x ∈ `2

C so that,
after possibly passing to a subsequence, xk w

⇁ x. In particular,

lim
k→∞

xk,n = lim
k→∞

(en, xk)`2C = (en, x)`2C = xn. (∗)

Moreover, since BC(0; `2
C) is weakly closed, ‖x‖`2C ≤ C. Let ε > 0. By assump-

tion, there exists N ∈ N such that |an|2 < ε for all n ≥ N . Then

lim sup
k→∞

∥∥∥Txk − Tx∥∥∥2

`2C

≤ lim sup
k→∞

N∑
n=1
|an(xk,n − xn)|2 + lim sup

k→∞

∞∑
n=N+1

|an(xk,n − xn)|2

+ ε lim sup
k→∞

ε
∑
n∈N
|(xk,n − xn)|2

≤ 2Cε.

Thus, since ε is arbitrary, a subsequence of (Txk)k∈Λ converges in `2
C, which

proves that T is a compact operator.
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Hints to Exercises.

11.1 For (v), use Eberlein-Šmulian’s Theorem.

11.3 Use repeatedly the theorem of Fubini-Tonelli. For (ii) Use Exercise 10.1 (v).

7/7


