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Exercise 12.1 The right shift map on the space `2 is given by

S : `2 → `2

(x1, x2, . . .) 7→ (0, x1, x2, . . .).

(i) Show that that the map S is a continuous linear operator with norm ‖S‖ = 1.

(ii) Compute the eigenvalues and the spectral radius of S.

(iii) Show that S has a left inverse which is not a right inverse, i.e. there exists
T : `2 → `2 with T ◦ S = id`2 but S ◦ T 6= id`2 . Is it possible to find a right
inverse of S, i.e. Q : `2 → `2 so that S ◦Q = id`2?

Solution. (i) Let x ∈ `2. By definition of S and the `2-norm ‖Sx‖`2 = ‖x‖`2 ,
which implies ‖S‖ = 1. Being linear and bounded, the map S is continuous.

(ii) Suppose x = (xn)n∈N ∈ `2 satisfies Sx = λx for some λ ∈ R. Then

(0, x1, x2, . . .) = (λx1, λx2, λx3 . . .).

If λ = 0, then x = 0 is immediate. If λ 6= 0, then x = 0 follows via

0 = λx1 ⇒ 0 = x1 = λx2 ⇒ 0 = x2 = λx3 ⇒ . . .

We conclude that S does not have eigenvalues. Since ‖Sn‖ = 1 for every n ∈ N
(the proof is as in (i)), the spectral radius of S is

rS = lim
n→∞
‖Sn‖

1
n = 1.

(iii) We define T : `2 → `2 to be the left shift map T : (x1, x2, . . .) 7→ (x2, x3, . . .).
Then, T ◦ S = id`2 and S ◦ T 6= id`2 . Indeed,

(T ◦ S)(x1, x2, . . .) = T (0, x1, x2, . . .) = (x1, x2, . . .),

(S ◦ T )(x1, x2, . . .) = S(x2, x3, . . .) = (0, x2, x3, . . .).

It is never possible find a right inverse for S: this would be equivalent to say
that S is bijective, which is clearly false since (1, 0, 0, . . .) /∈ S(`2).

Exercise 12.2 Let (H, 〈·, ·〉H) be a Hilbert space over C. Recall two definitions:

- A linear operator T ∈ L(H) is called an isometry if ‖Tx‖H = ‖x‖H for every x ∈ H;

- An invertible linear operator T ∈ L(H) is unitary if T ∗ = T−1.
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With these definitions,

(i) Prove that T is an isometry if and only if it preserves the scalar product, that is

〈Tx, Ty〉H = 〈x, y〉H for every x, y ∈ H.

(ii) Prove that T ∈ L(H) is unitary if and only if T is a bijective isometry.

(iii) Prove that if T ∈ L(H) is unitary, then its spectrum lies on the unit circle:

σ(T ) ⊂ S1 := {λ ∈ C | |λ| = 1}.

Solution. (i) The sufficiency of the condition is obvious; as for the necessity, it
suffices to use the the complex polarization identity

〈x, y〉H = 1
4
(
‖x+ y‖2 − ‖x− y‖2

)
+ i

4
(
‖x+ iy‖2

H − ‖x− iy‖2
H

)
(the proof is similar to that for the parallelogram identity) to conclude 〈Tx, Ty〉H =
〈x, y〉H for every x, y ∈ H.

(ii) If T ∈ L(H) is unitary, then T is invertible with inverse T−1 = T ∗ ∈ L(H). T
is also an isometry, because for every x ∈ H we have

‖Tx‖2
H = 〈Tx, Tx〉H = 〈T ∗Tx, x〉H = 〈x, x〉H = ‖x‖2

H .

Conversely suppose T ∈ L(H) is an bijective isometry. Then by (i),

〈T ∗Tx, y〉H = 〈Tx, Ty〉H = 〈x, y〉H

for every x, y ∈ H which implies T ∗Tx = x for every x ∈ H. Since T is bijective,
we obtain T ∗ = T−1 which means that T is unitary .

(iii) Let T ∈ L(H) be unitary. Part (ii) implies that T and T ∗ = T−1 are bijective
isometries. Therefore, ‖T‖ = 1 = ‖T ∗‖. Since the spectral radius of T is
bounded from above by ‖T‖ = 1, we obtain {λ ∈ C | |λ| > 1} ⊂ ρ(T ) (Satz
6.5.3).

Given λ ∈ C with 0 ≤ |λ| < 1, the spectral radius of the operator (λT ∗) is
bounded from above by ‖λT ∗‖ = |λ| < 1. Thus, (1 − λT ∗) is invertible on H
by Satz 2.2.7. Hence, (λ− T ) = −T ◦ (1− λT ∗) is bijective as composition of
bijective operators and we obtain λ ∈ ρ(T ). To conclude, σ(T ) ⊂ S1.
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Exercise 12.3 Let Ω ⊂ Rm be an open bounded subset. Given k ∈ L2(Ω × Ω,C)
such that k(x, y) = k(y, x) for almost every (x, y) ∈ Ω × Ω, consider the operator
K : L2(Ω,C)→ L2(Ω,C) defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y) dy,

and the operator A : L2(Ω,C)→ L2(Ω,C) defined by

A(f)(x) = f(x)−Kf(x).

Prove that injectivity of A and surjectivity of A are equivalent.

Solution. From Exercise 11.3 (iii), the operator K is self-adjoint. Therefore, the
operator A = (1−K) : L2(Ω)→ L2(Ω) is also self-adjoint (Beispiel 6.4.2 (ii)).

According to Exercise 11.3 (ii), K is a compact operator, which implies that the
operator A = (1−K) has closed image im(A) ⊂ H. According to Banach’s closed
range theorem, this is equivalent to im(A) = ker(A∗)⊥. Since A∗ = A, we conclude

A surjective ⇔ H = im(A) = ker(A)⊥ ⇔ ker(A) = {0} ⇔ A injective.

Exercise 12.4 Let (H, 〈·, ·〉H) be a Hilbert space over C.

(i) Let A ∈ L(H) be a self-adjoint operator and let λ ∈ ρ(A) be an element in its
resolvent set. Show that the resolvent Rλ := (λ − A)−1 is a normal operator,
that is RλR

∗
λ = R∗λRλ.

(ii) Let A,B ∈ L(H) be self-adjoint operators. The Hausdorff distance of their
spectra σ(A), σ(B) ⊂ C is defined to be

d
(
σ(A), σ(B)

)
:= max

{
sup

α∈σ(A)

(
inf

β∈σ(B)
|α− β|

)
, sup
β∈σ(B)

(
inf

α∈σ(A)
|α− β|

)}
.

Prove that

d
(
σ(A), σ(B)

)
≤ ‖A−B‖L(H).

Remark. The Hausdorff distance d is in fact a distance on compact subsets of C. In
particular, it restricts to an actual distance function on the spectra of bounded linear
operators.
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Solution. (i) Given the self-adjoint operator A ∈ L(H) and an element λ ∈ ρ(A),
the operator (λ− A) ∈ L(H) is bijective with inverse Rλ = (λ− A)−1 ∈ L(H).
Exercise 10.4 (i) then implies that R∗λ is bijective and according to Exercise 10.3
(iii), which also holds for the adjoint operator instead of the dual operator, there
holds,

R∗λ =
(
(λ− A)−1

)∗
=
(
(λ− A)∗

)−1
= (λ− A∗)−1 = (λ− A)−1 = Rλ.

Alternatively, for any x, y ∈ H, we can directly compute

〈x, y〉H = 〈(λ− A)Rλx, y〉H = 〈λRλx, y〉H − 〈ARλx, y〉H
= 〈Rλx, λy〉H − 〈Rλx,Ay〉H = 〈Rλx, (λ− A)y〉H = 〈x,R∗λ(λ− A)y〉H

which implies R∗λ(λ−A)y = y for any y ∈ H. According to Satz 6.5.2, resolvents
commute: RλRλ = RλRλ. This implies that Rλ is a normal operator.

(ii) Let A,B ∈ L(H) be self-adjoint operators. By symmetry of the Hausdorff
distance (in the sense that we can switch the roles of A and B), it suffices to
prove

sup
α∈σ(A)

(
inf

β∈σ(B)
|α− β|

)
≤ ‖A−B‖L(H).

The claim follows if we show the following implication for any α ∈ C:

inf
β∈σ(B)

|α− β| > ‖A−B‖L(H) ⇒ α ∈ ρ(A) = C \ σ(A).

Let α ∈ C satisfy infβ∈σ(B)|α − β| > ‖A − B‖L(H). Since the claim is trivial
otherwise, we may assume ‖A−B‖L(H) > 0. Then, α has positive distance from
σ(B) which implies α ∈ ρ(B). Hence, (α−B)−1 is well-defined and we obtain

(α− A) = (α−B)− (A−B) =
(
1− (A−B)(α−B)−1

)
(α−B). (∗)

Since (α−B) is bijective, it remains to prove that
(
1− (A−B)(α−B)−1

)
is

bijective. This follows from Satz 2.2.7 if we prove ‖(A−B)(α−B)−1‖L(H) < 1.

Consider the rational function fα : C → C given by fα(z) = (α − z)−1. By
assumption,

1
‖A−B‖

>
1

inf
β∈σ(B)

|α− β|
= sup

β∈σ(B)

1
|α− β|

= sup
{
|x|

∣∣∣ x ∈ fα(σ(B))
}
.
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The spectral mapping theorem (Satz 6.5.4) implies fα(σ(B)) = σ(fα(B)). Thus,

1
‖A−B‖

> sup
{
|x|

∣∣∣ x ∈ σ(fα(B))
}

= sup
x∈σ(fα(B))

|x| = rfα(B) (†)

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since
fα(B) = (α − B)−1 =: R is a resolvent of B, it is a normal operator by (i).
Hence,

‖Rx‖2
H = 〈Rx,Rx〉H = 〈R∗Rx, x〉H = 〈RR∗x, x〉H = 〈R∗x,R∗x〉H = ‖R∗x‖2

H ,

‖Rx‖2
H = 〈R∗Rx, x〉H ≤ ‖R∗Rx‖H‖x‖H ≤ ‖R∗R‖‖x‖2

H ,

⇒ ‖R‖2 ≤ ‖R∗R‖ ≤ ‖R∗‖‖R‖ = ‖R‖2,

⇒ ‖R‖2 = ‖R∗R‖ = sup
‖x‖H=1

‖R∗(Rx)‖H = sup
‖x‖H=1

‖R(Rx)‖H = ‖R2‖.

(Note how the last identity makes use of the first identity.) Inductively, we obtain
‖R‖2n = ‖R2n‖ for every n ∈ N which implies rfα(B) = rR = ‖R‖ = ‖(α−B)−1‖.
Combined with estimate (†), we obtain 1

‖A−B‖ > ‖(α−B)−1‖, which yields

‖(A−B)(α−B)−1‖ ≤ ‖A−B‖‖(α−B)−1‖ < 1

and proves the claim: From (∗) we conclude α ∈ ρ(A).

Exercise 12.5 (Heisenberg’s Uncertainty Principle) Let (H, 〈·, ·〉H) be a Hilbert
space over C. Let DA, DB ⊂ H be dense subspaces and let A : DA ⊂ H → H and
B : DB ⊂ H → H be symmetric linear operators. Assume that

A(DA ∩DB) ⊂ DB and B(DA ∩DB) ⊂ DA,

and define the commutator of A and B as

[A,B] : D[A,B] ⊂ H → H, [A,B](x) 7→ A(Bx)−B(Ax),

where D[A,B] := DA ∩DB.

(i) Prove that ∣∣∣〈x, [A,B]x〉H
∣∣∣ ≤ 2‖Ax‖H‖Bx‖H for every x ∈ D[A,B].

(ii) Define now the standard deviation of A

ς(A, x) :=
√
〈Ax,Ax〉H − 〈x,Ax〉2H
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at each x ∈ DA with ‖x‖H = 1. Verify that ς(A, x) is well-defined for every
x (i.e. that the radicand is real and non-negative) and prove that for every
x ∈ D[A,B] with ‖x‖H = 1 there holds∣∣∣〈x, [A,B]x〉H

∣∣∣ ≤ 2ς(A, x) ς(B, x).

Remark. The possible states of a quantum mechanical system are given by
elements x ∈ H with ‖x‖H = 1. Each observable is given by a symmetric linear
operator A : DA ⊂ H → H. If the system is in state x ∈ DA, we measure the
observable A with uncertainty ς(A, x).

(iii) Let A : DA → H and B : DB → H be as above. A,B is called Heisenberg pair if

[A,B] = i Id .

Show that, if A,B is a Heisenberg pair with B continuous (and DB = H), then
A cannot be continuous.

(iv) Consider the Hilbert space (H, 〈·, ·〉H) =
(
L2([0, 1],C), 〈·, ·〉L2

)
and the subspace

C1
0([0, 1],C) := {f ∈ C1([0, 1],C) | f(0) = 0 = f(1)}.

Recall that C1
0([0, 1],C) ⊂ L2([0, 1],C) is a dense subspace. The operators

P : C1
0([0, 1],C)→ L2([0, 1],C), Q : L2([0, 1],C)→ L2([0, 1],C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)

correspond to the observables momentum and position. Check that P and
Q are well-defined, symmetric operators. Check that [P,Q] : C1

0([0, 1],C) →
L2([0, 1],C) is well-defined.

Show that P and Q form a Heisenberg pair and conclude that the uncertainty
principle holds: for every f ∈ C1

0([0, 1],C) with ‖f‖L2([0,1],C) = 1 there holds

ς(P, f) ς(Q, f) ≥ 1
2 .

Thus we conclude: The more precisely the momentum of some particle is known,
the less precisely its position can be known, and vice versa.

Solution. (i) Let x ∈ D[A,B] := DA ∩DB. Then, applying the Cauchy–Schwarz
inequality, ∣∣∣〈x, [A,B]x〉H

∣∣∣ ≤ ∣∣∣〈x,A(Bx)〉H
∣∣∣+ ∣∣∣〈x,B(Ax)〉H

∣∣∣
=
∣∣∣〈Ax,Bx〉H ∣∣∣+ ∣∣∣〈Bx,Ax〉H ∣∣∣

≤ ‖Ax‖H‖Bx‖H + ‖Bx‖H‖Ax‖H
= 2‖Ax‖H‖Bx‖H .
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(ii) Since A is a symmetric operator, 〈x,Ax〉H is real for every x ∈ DA ⊂ DA∗ .
Indeed,

〈x,Ax〉H = 〈A∗x, x〉H = 〈Ax, x〉H = 〈x,Ax〉H .

Moreover, for x ∈ DA with ‖x‖H = 1, we have

〈x,Ax〉2H ≤ ‖x‖2
H‖Ax‖2

H = 〈Ax,Ax〉H
Therefore, the radicand in the definition of the standard deviation is real
and ς(A, x) is well-defined. For any λ, µ ∈ R, the commutators [A,B] and
[A− λ,B − µ] agree:

[A− λ,B − µ] = (A− λ)(B − µ)− (B − µ)(A− λ)
= AB − µA− λB + λµ−BA+ λB + µA− λµ = [A,B].

Since A is symmetric and λ ∈ R, the operator Ã = A− λ is also symmetric on
DÃ = DA. Moreover, for any x ∈ DA,

‖Ãx‖2
H = 〈Ãx, Ãx〉H = 〈Ax− λx,Ax− λx〉H

= 〈Ax,Ax〉H − λ〈x,Ax〉H − λ〈Ax, x〉H + λ2〈x, x〉H
= 〈Ax,Ax〉H − 2λ〈x,Ax〉H + λ2〈x, x〉H .

We observe that if we choose λ = 〈x,Ax〉H ∈ R and if ‖x‖H = 1, then

‖Ãx‖2
H = 〈Ax,Ax〉H − 〈x,Ax〉2H = ς(A, x)2.

Now, let x ∈ D[A,B] := DA∩DB with ‖x‖H = 1 be arbitrary. Since the operators
Ã := A− 〈x,Ax〉H and B̃ := B − 〈x,Bx〉H are symmetric, part i applies and
yields∣∣∣〈x, [A,B]x〉H

∣∣∣ =
∣∣∣〈x, [Ã, B̃]x〉H

∣∣∣ ≤ 2‖Ãx‖H‖B̃x‖H = 2ς(A, x) ς(B, x).

(iii) Suppose, B ∈ L(H) and A : DA ⊂ H → H satisfy

[A,B] = i Id .

By assumption, D[A,B] = DA ∩H = DA and B(DA) ⊂ DA. In particular, for
any n ∈ N the inclusion Bn(DA) ⊂ DA is satisfied, which is necessary to define
[A,Bn]. We prove [A,Bn] = niBn−1 by induction. For n = 1, the claim holds
by assumption. Suppose, it is true for some n ∈ N. Then

[A,Bn+1] = ABn+1 −Bn+1A =
(
ABn −BnA+BnA

)
B −Bn+1A

=
(
[A,Bn] +BnA

)
B −Bn+1A = niBn−1B +BnAB −Bn+1A

= niBn +Bn[A,B] = niBn + iBn = (n+ 1)iBn.
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A consequence is that B cannot be nilpotent: If Bn = 0 for some n ∈ N, then
Bn−1 = 1

ni
[A,Bn] = 0 which iterates to B = 0 in contradiction to [A,B] 6= 0.

Suppose by contradiction that A has finite operator norm ‖A‖. Then,

n‖Bn−1‖ = ‖[A,Bn]‖ ≤ ‖ABn‖+ ‖BnA‖ ≤ 2‖A‖‖Bn−1‖‖B‖.

Since ‖Bn−1‖ 6= 0, we obtain 2‖A‖ ≥ n
‖B‖ for every n ∈ N, thus ‖A‖ cannot be

finite and the contradiction is reached.

(iv) If f ∈ C1([0, 1];C), then f ′ is bounded and in particular f ′ ∈ L2([0, 1];C).
Therefore, the linear operators

P : C1
0([0, 1];C)→ L2([0, 1];C), Q : L2([0, 1];C)→ L2([0, 1];C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)

are indeed well-defined. They are also symmetric. For Q this follows trivially
from s ∈ [0, 1] ⊂ R. Given any f, g ∈ DP := C1

0([0, 1];C), we have

〈Pf, g〉L2 =
∫ 1

0
if ′(s)g(s) ds = −

∫ 1

0
if(s)g′(s) ds =

∫ 1

0
f(s)ig′(s) ds = 〈f, Pg〉L2 .

When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1).
Hence, P : C1

0([0, 1];C) → L2([0, 1];C) is symmetric (but not self-adjoint! see
Beispiel 6.6.1).

Next, we verify that the commutator [P,Q] is well-defined. Since DQ =
L2([0, 1];C) is the whole space, the only thing to check is that Qf : s 7→ sf(s)
is in DP = C1

0([0, 1];C) whenever f ∈ D[P,Q] = C1
0([0, 1];C). But this follows

trivially from the product rule. Moreover,

([P,Q]f)(s) = (P (Qf))(s)− (Q(Pf))(s) = if(s) + isf ′(s)− sif ′(s) = if(s)

for almost every s ∈ [0, 1] which proves that P,Q is a Heisenberg-pair. By part
ii,

∀f ∈ C1
0 , ‖f‖L2 = 1 : ς(P, f) ς(Q, f) ≥ 1

2

∣∣∣〈f, [P,Q]f〉L2

∣∣∣ = 1
2

∣∣∣〈f, if〉L2

∣∣∣ = 1
2 .
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Hints to Exercises.

12.2 For (i), use the the complex polarization identity

〈x, y〉H = 1
4
(
‖x+ y‖2 − ‖x− y‖2

)
+ i

4
(
‖x+ iy‖2

H − ‖x− iy‖2
H

)
.

For (iii), use Satz 6.5.3 and Satz 2.2.7.

12.3 Use Exercise 11.3.

12.4 Prove that R∗λ = Rλ and use that resolvents to different values commute (Satz
6.5.2). Argue that it suffices to show the following implication for any α ∈ C:

inf
β∈σ(B)

|α− β| > ‖A−B‖L(H) ⇒ α ∈ ρ(A).

Given fα(z) = (α − z)−1, the spectral mapping theorem implies fα(σ(B)) =
σ(fα(B)). Show that normal operators R have spectral radius rR = ‖R‖. Apply
Satz 2.2.7.

12.5 For (ii): in order to apply (i), find symmetric operators Ã = A−λ and B̃ = B−µ
satisfying

[A,B] = [Ã, B̃], ς(A, x) = ‖Ãx‖H , ς(B, x) = ‖B̃x‖H .

For (iii), begin by checking that [A,Bn] is well-defined and prove [A,Bn] = niBn−1

for every n ∈ N.
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