D-MATH Functional Analysis | ETH Ziirich
Prof. M. Struwe Exercise Sheet 12 Autumn 2019

Exercise 12.1 The right shift map on the space £? is given by
S: 02— (2
(.23'1,372, .. ) — (0,$1, Zo, .. )

(i) Show that that the map S is a continuous linear operator with norm ||S|| = 1.
(ii) Compute the eigenvalues and the spectral radius of S.

(iii) Show that S has a left inverse which is not a right inverse, i.e. there exists
T:0? — (?> with To S = idp but SoT # idpe. Is it possible to find a right
inverse of S, i.e. Q : ¢*> — (? so that S o Q = idp?

Solution. (i) Let =z € ¢*. By definition of S and the (?>-norm | Sz||z = ||ze,
which implies ||S|| = 1. Being linear and bounded, the map S is continuous.

(ii) Suppose = = (Z,)nen € £? satisfies Sx = Ax for some A € R. Then
(0,21, x9,...) = (Az1, Ax2, AZ3 . . .).
If A =0, then z = 0 is immediate. If X\ # 0, then x = 0 follows via
O=Xt; = 0=21=XA29 = 0=29 =223 = ...

We conclude that S does not have eigenvalues. Since [|S™|| =1 for every n € N
(the proof is as in (i)), the spectral radius of S is

rsg = lim [|S”[[» = 1.
(iii) We define T': £> — ¢ to be the left shift map T': (x1,2o,...) — (z2,73,...).
Then, T'o .S =idp and S o T # idy2. Indeed,
(TOS)(LEl,QIQ,. . ) = T(O,l’l,dlg,. . ) = (Q?l,ﬂj‘g, - .),
(SoT)(xy,xo,...) = S(x2,x3,...) = (0,29, 23,...).

It is never possible find a right inverse for S: this would be equivalent to say
that S is bijective, which is clearly false since (1,0,0,...) & S(¢?). O

Exercise 12.2 Let (H, (-,-)y) be a Hilbert space over C. Recall two definitions:
- A linear operator T' € L(H) is called an isometry if | Tx| g = ||z||g for every z € H;
- An invertible linear operator T' € L(H) is unitary if T* = T~
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With these definitions,

(i) Prove that T is an isometry if and only if it preserves the scalar product, that is

(Tx, Ty)y = (x,y)y for every z,y € H.

(ii) Prove that T'€ L(H) is unitary if and only if 7" is a bijective isometry.

(iii) Prove that if '€ L(H) is unitary, then its spectrum lies on the unit circle:

o(T)cS':={AeC||\N=1}

Solution. (i) The sufficiency of the condition is obvious; as for the necessity, it
suffices to use the the complex polarization identity

1 i | .
(v = 2 (le+yl? = lle = yl*) + 2 (llo + iyl = llz = iyl
1 1

(the proof is similar to that for the parallelogram identity) to conclude (Tx, Ty) g =
(x,y) g for every x,y € H.

(i) If T € L(H) is unitary, then T is invertible with inverse T-! =T* € L(H). T
is also an isometry, because for every x € H we have

T2} = (T2, Ta)y = (T"Tz,2)n = (v, 2} = 2|5
Conversely suppose T' € L(H) is an bijective isometry. Then by (i),
(T"Tz,y)u = Tz, Ty)m = (&, y)n

for every x,y € H which implies T*T'x = x for every x € H. Since T is bijective,
we obtain 7% = T~! which means that T is unitary .

(iii) Let T € L(H) be unitary. Part (ii) implies that 7" and T* = T~ ! are bijective

isometries. Therefore, ||T']| = 1 = ||T*||. Since the spectral radius of T is
bounded from above by ||T|| = 1, we obtain {\ € C | |\| > 1} C p(T) (Satz
6.5.3).

Given A € C with 0 < || < 1, the spectral radius of the operator (A7) is
bounded from above by ||[A\T*|| = |A\| < 1. Thus, (1 — AT™) is invertible on H
by Satz 2.2.7. Hence, (A —T) = —T o (1 — AT™) is bijective as composition of
bijective operators and we obtain A\ € p(T'). To conclude, o(T) C S*. O
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Exercise 12.3 Let 2 C R™ be an open bounded subset. Given k € L*(Q2 x Q,C)

such that k(z,y) = k(y,x) for almost every (z,y) € Q x €, consider the operator
K: L*(Q,C) — L*(Q,C) defined by

K pu—
(K@) = [ k(z.y)f(y) dy.
and the operator A: L*(Q,C) — L?(2, C) defined by

A(f)(@) = fz) — Kf(x).

Prove that injectivity of A and surjectivity of A are equivalent.

Solution. From Exercise 11.3 (iii), the operator K is self-adjoint. Therefore, the
operator A = (1 — K): L*(Q2) — L*(Q) is also self-adjoint (Beispiel 6.4.2 (ii)).

According to Exercise 11.3 (ii), K is a compact operator, which implies that the
operator A = (1 — K) has closed image im(A) C H. According to Banach’s closed
range theorem, this is equivalent to im(A) = ker(A*)*. Since A* = A, we conclude

A surjective < H =im(A) = ker(A)" & ker(A) = {0} < A injective.

Exercise 12.4 Let (H, (-,-)g) be a Hilbert space over C.

(i) Let A € L(H) be a self-adjoint operator and let A € p(A) be an element in its
resolvent set. Show that the resolvent Ry := (A — A)~! is a normal operator,

that is R)\RK = R;R)\

(ii) Let A, B € L(H) be self-adjoint operators. The Hausdorff distance of their
spectra 0(A),o(B) C C is defined to be

d(o(A),0(B)) := max{ su (inf o — ), su (inf o — >}
(o 08) = max{ sup (i, o= 51). sup ( inf a5
Prove that

d(a(A),0(B)) < | A= Bllrm).

Remark. The Hausdorff distance d is in fact a distance on compact subsets of C. In
particular, it restricts to an actual distance function on the spectra of bounded linear
operators.
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Solution. (i) Given the self-adjoint operator A € L(H) and an element A\ € p(A),
the operator (A — A) € L(H) is bijective with inverse Ry = (A — A)~! € L(H).
Exercise 10.4 (i) then implies that R} is bijective and according to Exercise 10.3
(iii), which also holds for the adjoint operator instead of the dual operator, there

holds,

1 _

Ry=((A=A)") =((A=4)) =(R-4a9"'=(R-A4)" =Ry
Alternatively, for any x,y € H, we can directly compute

(,9)m = (A = A) Rz, y)m = (ARxz,y) i — (AR\T, y) &
= <R>\$;X?J>H — (R,\x, Ay>H = <R/\l‘a (X - A)y>H = <l‘; Rj‘\(X - A)?/)H

which implies R}(\— A)y = y for any y € H. According to Satz 6.5.2, resolvents
commute: )Ry = RyR,. This implies that Iy is a normal operator.

(ii) Let A,B € L(H) be self-adjoint operators. By symmetry of the Hausdorff
distance (in the sense that we can switch the roles of A and B), it suffices to
prove

su inf |oo— )< A-B .
aeogt)(ﬁea(B)' Al) =l ey

The claim follows if we show the following implication for any o € C:

inf o —f3|>|A-DB = acpd)=C A).
ol fa =8> A= Bl = a€p(4)=Clo(4)

Let o € C satisfy infgeo(p)|a — | > ||A — Bl|r(m)- Since the claim is trivial
otherwise, we may assume ||A — B||) > 0. Then, a has positive distance from
o(B) which implies a € p(B). Hence, (a — B)~! is well-defined and we obtain

(@=A)=(a=B)—(A=B)=(1-(A=B)(a—-B)")(a-B). (¥

Since (« — B) is bijective, it remains to prove that (1 — (A= B)(a— B)‘1> is
bijective. This follows from Satz 2.2.7 if we prove ||[(A — B)(a — B) Y| ) < 1.

Consider the rational function f,: C — C given by f,(2) = (o — z)"!. By
assumption,
1 1 1

> — = sup —— =
A-B inf | — o(B) | —
I I il o =Bl seo(p) o = f]
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The spectral mapping theorem (Satz 6.5.4) implies f,(0(B)) = o(fa(B)). Thus,

>sup{le] [z €o(fa(B)} = swp frl=rpm (1)

1
|A - B r€0(fa(B))

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since
fa(B) = (o« — B)™! =: R is a resolvent of B, it is a normal operator by (i).
Hence,

|Rz||3 = (R, Rr)y = (R*Rw, )y = (RR*z,2)g = (R'z, R*x)y = || R x||%,
IRz || = (R*Re,2)g < |R* Ral|ullzlla < |R*R|l||=|l3,

= [|RI* < |R*R| < |R|R] = | R|?,

= |R|* = |R'R|| = sup |[R"(Rz)lly = sup [|R(Rz)|m = |R*].

z||p=1 =]l =1

(Note how the last identity makes use of the first identity.) Inductively, we obtain

|R||*" = ||R*"|| for every n € N which implies 7y, 5y =g = || R|| = ||(a — B)7|.

Combined with estimate (}), we obtain m > ||[(a — B)7!||, which yields
(A= B)(a—B) ' < [[A=Bllll(a = B)7'|| < 1

and proves the claim: From (x) we conclude o € p(A). O

Exercise 12.5 (Heisenberg’s Uncertainty Principle) Let (H,(-,-)g) be a Hilbert
space over C. Let D4, Dg C H be dense subspaces and let A: Dy C H — H and
B: Dg C H — H be symmetric linear operators. Assume that

A(DaNDp)C D and B(DaNDg)C Da,
and define the commutator of A and B as
[A,B]: Diapy C H— H, [A, B](z) — A(Bz) — B(Ax),
where Dy g := DaN Dp.
(i) Prove that

(2, [A, Bla)u| < 2|l Ax||n||Bz|s  for every x € Diap).

(ii) Define now the standard deviation of A

S(A,z) = \/<A1:,Aa:)H — (x, Az)%,



ETH Ziirich Functional Analysis | D-MATH
Autumn 2019 Exercise Sheet 12 Prof. M. Struwe

(iii)

at each x € D, with ||z||g = 1. Verify that ¢(A,z) is well-defined for every
x (i.e. that the radicand is real and non-negative) and prove that for every
x € Dy p) with ||z||gz = 1 there holds

‘<£L‘, [A> B]w>H‘ < 2§<A7 l’) §<Ba l’)

Remark. The possible states of a quantum mechanical system are given by
elements x € H with ||z||g = 1. Each observable is given by a symmetric linear
operator A: Dy C H — H. If the system is in state z € D4, we measure the
observable A with uncertainty ¢(A, x).

Let A: Dy — H and B: Dg — H be as above. A, B is called Heisenberg pair if
[A,B] =ild.

Show that, if A, B is a Heisenberg pair with B continuous (and D = H), then
A cannot be continuous.

Consider the Hilbert space (H, (-,")g) = (LQ([O, 1], C), (-, ~)L2) and the subspace
Co([0,1],C) = {f € C*([0,1],C) | £(0) =0 = f(1)}.
Recall that C}([0,1],C) € L?*([0,1],C) is a dense subspace. The operators
P: Cy([0,1],C) — L*([0,1],C),  Q: L*([0,1],C) — L*([0,1],C)
f(s) = if'(s) f(s) = sf(s)

correspond to the observables momentum and position. Check that P and
Q are well-defined, symmetric operators. Check that [P,Q]: C}([0,1],C) —
L?([0, 1], C) is well-defined.

Show that P and @) form a Heisenberg pair and conclude that the uncertainty
principle holds: for every f € C§([0,1],C) with || f||2(o,1),c) = 1 there holds

(P, f)<(@,f) = 3.

Thus we conclude: The more precisely the momentum of some particle is known,
the less precisely its position can be known, and vice versa.

Solution. (i) Let © € Dia ) := Da N Dp. Then, applying the Cauchy—Schwarz

inequality,
’( ’ ‘mABm H‘—I—‘xB(Ax» ‘
:‘ (Az, Ba:H’~|—’ (Bx, Ax) H‘

< ||Az||z||Bx|g + ||Bz| a||Az|| g
= 2||Az| g || Bz| -
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(ii) Since A is a symmetric operator, (x, Az)y is real for every x € Dy C Da-.

Indeed,
(z, Az)y = (A", 2) g = (Az,2) g = (v, Az) .
Moreover, for x € D4 with ||z||g = 1, we have
(@, Ax)yy < |2l || Al = (Az, Az)g

Therefore, the radicand in the definition of the standard deviation is real
and ¢(A,z) is well-defined. For any A, u € R, the commutators [A, B] and
[A— A\, B — ] agree:
[A=AB—p]=(A=NB-p) = (B-p)(A=2)
= AB — pA—AB+ A \u— BA+ AB+ pA — A \u=[A, B].

Since A is symmetric and A € R, the operator A = A — ) is also symmetric on
D ; = D4. Moreover, for any x € Dy,

|Az||% = (Az, Az)y = (Ax — Az, Az — \z)y
= (Az, Ax) g — M, Ax) g — MAz, )y + Nz, 2) g
= (Ax, Az) g — 2M(x, Az) g + Nz, 7).
We observe that if we choose A = (2, Az)y € R and if ||z||gz = 1, then
|Az||% = (Az, Azx) g — (z, Az)% = (A, x)°.

Now, let x € Dja ) := DaNDp with ||z||z = 1 be arbitrary. Since the operators
A:=A—(x,Az)y and B := B — (z, Bx)y are symmetric, part i applies and
yields

[z, [A, Bla)u| = |(z, [A, Bla)u| < 2| Az||u| Bx|ls = 2(A, 2) (B, z).

(iii) Suppose, B € L(H) and A: Dy C H — H satisty
[A,B] =11d.

By assumption, Dijap = DaNH = Dy and B(D4) C D4. In particular, for
any n € N the inclusion B"(D,) C D, is satisfied, which is necessary to define
[A, B"]. We prove [A, B"] = niB""! by induction. For n = 1, the claim holds
by assumption. Suppose, it is true for some n € N. Then
[A, B = AB" — B""'A = (AB" — B"A+ B"A)B - B""'A
= ([A,B"]+ B"A)B - B"'A =niB""'B+ B"AB — B""' A
=niB" + B"[A, B = niB" +iB" = (n + 1)iB".



ETH Ziirich Functional Analysis | D-MATH
Autumn 2019 Exercise Sheet 12 Prof. M. Struwe

A consequence is that B cannot be nilpotent: If B™ = 0 for some n € N, then
Bt = L[A B"] = 0 which iterates to B = 0 in contradiction to [A, B] # 0.
Suppose by contradiction that A has finite operator norm ||Al|. Then,

nl|B"H = |I[A, B"]|| < [AB"|| + || B"A|| < 2[|Al[| B"~[||B]-

Since ||B" || # 0, we obtain 2||A|| > g7 for every n € N, thus [|A]| cannot be

finite and the contradiction is reached.
If f € C'Y([0,1];C), then f" is bounded and in particular f' € L*(]0,1];C).
Therefore, the linear operators
P: Cy([0,1];C) — L*([0,1];C), Q: L*([0,1];C) — L*([0,1];C)
fs) = if'(s) f(s) = sf(s)

are indeed well-defined. They are also symmetric. For () this follows trivially
from s € [0,1] C R. Given any f,g € Dp := C}([0,1];C), we have

(Pfghe = [ i o) ds == [ 77 () ds = [ Fs)ig () ds = (. Pohia

When integrating by parts, the boundary terms vanish due to f(0) =0 = f(1).
Hence, P: C}(]0,1];C) — L*([0, 1]; C) is symmetric (but not self-adjoint! see
Beispiel 6.6.1).

Next, we verify that the commutator [P, ()] is well-defined. Since Dy =
L?([0,1]; C) is the whole space, the only thing to check is that Qf: s — sf(s)
is in Dp = C;([0,1]; C) whenever f € Dipg = Cj([0,1];C). But this follows
trivially from the product rule. Moreover,

([P, Qf)(s) = (P(Q))(s) = (QP))(s) = if (s) +isf'(s) — sif'(s) = if (s)

for almost every s € [0, 1] which proves that P, is a Heisenberg-pair. By part
i,

VFeCh Ifl=1: (P, f)s(Q.f) > §[(£.[P.QIf)r

1

5

= (Fif)ee

]
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Hints to Exercises.

12.2

12.3
12.4

12.5

For (i), use the the complex polarization identity

1 7 ) .
(.y)e = 7 (Il +yl* = lle = yl?) + 7 (e + iyl — lle —iyllF).

For (iii), use Satz 6.5.3 and Satz 2.2.7.
Use Exercise 11.3.

Prove that R} = Ry and use that resolvents to different values commute (Satz
6.5.2). Argue that it suffices to show the following implication for any «a € C:

inf la—28|>||A—-B = «a € p(A).
Jint o= 8] > |14 - Blluan pl4)

Given f,(z) = (o — 2)7!, the spectral mapping theorem implies f,(c(B)) =
o(fa(B)). Show that normal operators R have spectral radius rg = || R||. Apply
Satz 2.2.7.

For (ii): in order to apply (i), find symmetric operators A = A—Xand B = B—p
satisfying

[A’B] = ["ZLB]’ §(A,I) = ||AmHHv §(B,JZ) = ||Bx||H

For (iii), begin by checking that [A, B"] is well-defined and prove [A, B"] = niB"™!
for every n € N.



