

7 August 2018



# Name: Student number: Study program:

• Put your student identity card onto the desk.

• During the exam no written aids nor calculators or any other electronic device are allowed in the exam room. **Phones must be switched off and stowed away** in your bag during the whole duration of the exam.

• A4-paper is provided. No other paper is allowed. Write with blue or black pens. Do *not* use pencils, erasable pens, red or green ink, nor Tipp-Ex.

• Start every problem on a new sheet of paper and write your name on every sheet of paper. Leave enough ( $\approx 3 \text{ cm}$ ) empty space on the margins (top, bottom and sides). You can solve the problems in any order you want, but please sort them in the end.

• You will be asked to return **all** sheets of paper you are assigned, however you have the freedom to clearly cross those sheets you do not want us to consider during the grading process (i.e. scratch paper).

• Please write neatly! Please do not put the graders in the unpleasant situation of being incapable of reading your solutions, as this will certainly not play in your favour!

• All your answers do need to be properly justified. It is fine and allowed to use theorems/statements proved in class or in the homework (i. e. in problem sets 1–13) without reproving them (**unless otherwise stated**), but you should provide a precise statement of the result in question.

• Said  $x_i \in \{0, ..., 10\}$  your score on exercise *i*, your grade will be bounded from below by  $\min\{6, \frac{1}{10}\sum_{i=1}^{7} x_i\}$ . The *complete and correct* solution of 6 problems out of 7 is

enough to obtain the maximum grade 6,0.

The *complete and correct* solution of 4 problems out of 7 is enough to obtain the pass/sufficient grade 4,0.

• The duration of the exam is **180 minutes**.

#### Do not fill out this table!

| task   | points | check |
|--------|--------|-------|
| 1      | [10]   |       |
| 2      | [10]   |       |
| 3      | [10]   |       |
| 4      | [10]   |       |
| 5      | [10]   |       |
| 6      | [10]   |       |
| 7      | [10]   |       |
| total  | [70]   |       |
| grade: |        |       |

#### Problem 1.

(a) Given two topological spaces  $(X_1, \tau_1), (X_2, \tau_2)$  define what it means that a function  $f: X_1 \to X_2$  is open. Provide an explicit example of two topological spaces  $(X_1, \tau_1), (X_2, \tau_2)$  and a map  $f: X_1 \to X_2$  that is injective, continuous but *not* open.

(b) State the open mapping theorem.

(c) Is it possible to find a linear bijection  $T: \ell^1 \to \ell^\infty$  that is continuous? If so, provide an explicit example; otherwise, justify your answer with a proof.

### Problem 2.

#### [10 points]

Let  $(X, \|\cdot\|_X)$  be a reflexive Banach space over  $\mathbb{R}$ . Given a positive integer n, consider n pairwise distinct points  $x_1, \ldots, x_n$  in X and the functional

$$F: X \to \mathbb{R}, \qquad \qquad F(x) = \sum_{i=1}^{n} ||x - x_i||_X^2.$$

(a) Prove that the functional F has a global minimum on X, namely the value  $\inf_{x \in X} F(x)$  is a real number attained by F at some  $\overline{x} \in X$ .

Let us now specify the result above to the case when  $(X, \|\cdot\|_X)$  is a Hilbert space (thus  $\|\cdot\|_X$  is induced by a scalar product  $\langle \cdot, \cdot \rangle_X$ ).

(b) Prove that the minimum  $\overline{x} \in X$  is unique, and that  $\overline{x}$  belongs to the convex hull K of  $\{x_1, \ldots, x_n\}$ .

#### Problem 3.

[10 points]

(a) Let V be a vector space over  $\mathbb{R}$  and let  $d: V \times V \to \mathbb{R}$  be a distance. State necessary and sufficient conditions for  $d(\cdot, \cdot)$  to be induced by a norm  $\|\cdot\|$ , in the sense that

$$d(v_1, v_2) = \|v_1 - v_2\| \quad \forall v_1, v_2 \in V.$$

(Note that only a statement is requested, no proof.)

(b) Consider the vector space  $C([0, \infty[; \mathbb{R}) \text{ consisting of continuous functions defined})$ on  $[0, \infty[ \subset \mathbb{R} \text{ and attaining real values, and the distance}]$ 

$$d(f_1, f_2) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|f_1 - f_2\|_{C^0([0,n])}}{1 + \|f_1 - f_2\|_{C^0([0,n])}}$$

where  $||f||_{C^0([0,n])} = \sup_{x \in [0,n]} |f(x)|$ . Is *d* induced by a norm?

## [10 points]

## Problem 4.

Consider the space  $(c_0, \|\cdot\|_{\ell^{\infty}})$ , where as usual  $c_0 := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} : \lim_{n \to \infty} x_n = 0\}$ and the subspace  $c_c := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} : \exists N \in \mathbb{N} \forall n \ge N : x_n = 0\}$ . Consider the linear operator

$$T: c_c \subset c_0 \to \ell^1, \qquad (Tx)_n = nx_{n+1}$$

(a) Is T extendable to a bounded linear operator  $T: c_0 \to \ell^1$ ? Justify your answer.

(b) Compute the adjoint of T, namely determine

$$T^*: D_{T^*} \subset (\ell^1)^* \to (c_0)^*.$$

Notice that the characterization of the subspace  $D_{T*}$  is also required.

(c) Prove that the operator T is closable. Define the domain  $D_{\overline{T}}$  of its closure and determine an element belonging to the set  $D_{\overline{T}} \setminus c_c$ .

## Problem 5.

[10 points]

[10 points]

Let H be a Hilbert space over  $\mathbb{R}$  and let  $A \colon H \to H$  be linear, compact and self-adjoint.

(a) State the spectral theorem for A.

Now, suppose the existence of two complementary and mutually orthogonal subspaces  $H', H'' \subset H$  that are A-invariant, meaning that

 $H = H' \oplus^{\perp} H'', \qquad A(H') \subset H', \qquad A(H'') \subset H''.$ 

(b) Show that each of the restricted operators  $A' := A_{|H'}$  and  $A'' := A_{|H''}$  is also compact and self-adjoint.

Assume now that A is non-negative definite (i.e.  $(Ax, x) \ge 0$  for all  $x \in H$ ).

(c) State the Courant–Fischer characterization of the eigenvalues of A.

(d) Denoted by  $\lambda_1, \lambda'_1, \lambda''_1$  the first (namely: the *largest*) eigenvalue of A, A', A'' respectively, show that

 $\lambda_1 = \max\{\lambda_1', \lambda_1''\}.$ 

#### Problem 6.

[10 points]

[10 points]

(a) State the Arzelà–Ascoli theorem.

Consider  $S \subset C^0([0,1])$  a closed linear subspace (where  $C^0([0,1])$  is endowed with its standard sup norm). Suppose that the following implication holds:

 $f \in S \Rightarrow f \in C^1([0,1]).$ 

- (b) Show that the operator id:  $S \to C^1$  given by id(f) = f has closed graph.
- (c) Show that S is finite dimensional.

## Problem 7.

Let  $\Omega \subset \mathbb{R}^d$  be a measurable set with finite measure.

(a) Show that, for any  $1 \le p \le \infty$  and any  $N \ge 0$ , the set

$$F_{p,N} := \{ f \in L^p(\Omega) : \|f\|_{L^p} \le N \}$$

is a closed subset of  $L^1(\Omega)$ .

(b) In the case d = 1 and  $\Omega = [0, 1]$ , let  $X \subseteq L^1([0, 1])$  be a closed vector subspace and assume that

$$X \subset \bigcup_{1$$

Prove that  $X \subseteq L^q([0,1])$  for some  $1 < q \le \infty$ .

(c) In the same setting as in (b) show that there exists a constant C > 0 such that

$$\|f\|_{L^q} \le C \|f\|_{L^1} \quad \forall f \in X.$$