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We follow the pages 29-32 of the lectures by Brian White [3].
During the very first presentation, we looked at a specific variational prob-

lem to deduce that a minimal surface would have to pass the first derivative test,
which led us to the minimal surface equation. The derivative of the area func-
tional under deformations gave us valuable information about minimal surfaces.
However, we only looked at the first derivative, and we can ask ourselves if the
study of higher order derivatives is also helpful. The answer to this question is
yes, as we shall shortly see by considering the second derivative.

Let M ⊂ R3 be an orientable minimal surface, and let φt : M → R3 be a
smooth one-parameter family of smooth maps.

Definition 1. We say that M is stable if(
d2

dt2

)∣∣∣∣
t=0

area(φtM) ≥ 0,

for all deformations φt with φ0(x) ≡ x and φt(y) ≡ y for y ∈ ∂M .

Remark 2. The smooth maps φt defined above induce a one-parameter family of
surfaces Mt = φt(M), each of them with boundary ∂M , and such that M0 = M .

We want to consider normal vector fields

X(x) =

(
d

dt

)∣∣∣∣
t=0

φt(x),

which can be written as
X = uν,

where u : M → R is a function and ν is the unit normal vector field (see figure
1). Moreover, note that φt(x) = x for x ∈ ∂M implies that u ≡ 0 on ∂M .

Theorem 3 (The second variation formula). Under the hypotheses above,(
d2

dt2

)∣∣∣∣
t=0

area(φtM) =

∫
M

(|∇u|2 − |A|2u2) dS

=

∫
M

(−∆u− |A|2u)u dS.
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Figure 1: Deformation of the surface M by the function u.

Proof. See pages 38-40 of the reference [2].

Using the second variation formula, we may state the following corollary.

Corollary 4. A surface M as above is stable if and only if for any function
u ∈ C∞c (M) such that u ≡ 0 on ∂M , we have∫

M

(|∇u|2 − |A|2u2) dS ≥ 0.

Let us now give the following definitions, some of them already known from
previous presentations.

Definition 5. The total curvature of M is given by

TC(M) =

∫
M

|K| dS,

where K is the Gaussian curvature, K = κ1κ2.

Definition 6. A topological space X is called simply connected if it is path-
connected and any loop in X defined by f : S1 → X can be contracted to a
point.

Definition 7. Let M ⊂ Rd be a compact, smooth manifold without boundary.
Assume that the metric in M is induced by the scalar product 〈·, ·〉 in Rd. A
curve γ : I ⊂ R → M is a geodesic if the covariant derivative (defined by
Riemannian connection), D

dt (γ
′(t)), is equal to zero for all t ∈ I.

Definition 8. A regular surface M is said to be complete when for every point
p ∈M , any parametrized geodesic γ : [0, ε)→M of M , starting from γ(0) = p,
may be extended into a parametrized geodesic γ̃ : R→M , defined on the entire
line R.

Definition 9. Let p, q ∈M be points on the surface M . We define the distance
function dM (p, q) : M ×M → [0,∞) as
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Figure 2: To determine dM (p, q), we take the infimum of the length of all curves
connecting p and q.

dM (p, q) := inf
{

length(γ) : γ is a curve in M connecting p and q
}

,

see figure 2.

Remark 10. As a distance function, dM (·, ·) defines a metric on M .

Definition 11. The geodesic ball Br(p) centered at the point p ∈M with radius
r is the union of all points x ∈M such that dM (p, x) < r, where dM (p, q) is the
length of a minimizing geodesic between p and q in M (see figure 3).

We now give some results which will be useful later.

Lemma 12. If we define rp(x) := dM (p, x), then its gradient ∇Mrp exists
almost everywhere.

Proof. Although this is a general fact about distance functions, let us give a
formal proof. We first show that rp is Lipschitz continuous. Indeed, using the
reverse triangular inequality, we may write that for all x1, x2 ∈M ,

|dM (p, x1)− dM (p, x2)| ≤ dM (x1, x2) ≤ |x1 − x2|,

where in the last term, |·| denotes the three-dimensional Euclidean norm, and
thus the last equality holds as dM (x1, x2) is always greater or equal than the
length of the direct line connecting x1 and x2. Thus rp is indeed Lipschitz
continuous with Lispschitz constant 1. Let us now have a look at the following
theorem.

Theorem 13 (Rademacher’s theorem). If U is an open subset of Rn and f :
U → Rm is Lipschitz continuous, then f is differentiable almost everywhere.

Since a geodesic ball is open, we may now use this theorem on M to conclude
the proof.

Lemma 14. We have that |∇Mrp| = 1 almost everywhere.
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Proof. Once again, this is a general fact about distance functions, best under-
stood analysing the norm function x 7→ ‖x‖ restricted to M , similarly to what
we did in lemma 12.

We are now ready to investigate what follows.

Proposition 15. Let M be a complete, simply connected surface with K ≤ 0.
Let A(r) = Ap(r) be the area of the geodesic ball Br(p) of radius r about some
point p ∈M . Let

θ(M) = lim
r→∞

A(r)

πr2
.

Then

θ(M) = 1− 1

2π

∫
M

K dS = 1 +
TC(M)

2π
.

Remark 16. Note that θ(M) is an intrinsic analog of Θ(M), the density at
infinity of a properly immersed minimal surface (without boundary) in Euclidean
space.

Proof of Prop. 15. Let L(r) be the length of ∂Br. From a previous presentation,
we know the following theorem to be true.

Theorem 17 (Coarea formula). Let M be a submanifold of Rn, and h : M → R
be a proper (i.e. h−1((−∞, r]) is compact for all r ∈ R) Lipschitz function on
M . Then for every locally integrable function f on M and r ∈ R we have that∫

h≤r
f |∇Mh| =

∫ r

−∞

∫
h=τ

f dτ,

where ∇Mh is the tangential projection of the gradient.

Define f = 1, h(x) = rp(x). Using theorems 12 and 14, we find that∫
Br(p)

|∇Mrp| dµ =

∫ r

0

(∫
∂Bτ (p)

dω

)
dτ =

∫ r

0

|∂Bτ (p)| dτ =

∫ r

0

L(τ) dτ,

where dµ denotes the volume measure on M and dω denotes the volume measure
on ∂Bτ (r). But we also have that∫

Br(p)

|∇Mrp| dµ =

∫
Br(p)

1 dµ = |Br(p)| = A(r),

and thus in this case A′ = L. So

A′′ = L′ =

∫
∂Br

k ds = 2π −
∫
Br

K dS.

The formula for L′ follows from the first variation of arc length, where k is the
geodesic curvature of ∂M , and the last equality then follows from the Gauss-
Bonnet theorem given below.
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Figure 3: The geodesic ball in M centered at the point p

Theorem 18 (Gauss-Bonnet). Suppose M is a compact two-dimensional Rie-
mannian manifold with boundary ∂M . Let K be the Gaussian curvature of M ,
and let k be the geodesic curvature of ∂M . Then∫

M

K dS +

∫
∂M

k ds = 2πχ(M),

where χ(M) is the Euler characteristic of M .

Remark 19. In our case, χ(M) = 1. Indeed, under the above hypotheses, we
may reduce our problem to the case of an open disk, and the Euler characteristic
of an open disc is equal to 1 because the disc is contractible.

Thus

lim
r→∞

A′′(r) = 2π −
∫
M

K dS = 2π + TC(M).

The results then follows by L’Hôpital’s rule.

Corollary 20. If M as above is a minimal surface in R3 and if θ(M) < 3, then
M is plane.

Proof. Let us recall the following theorem already used in another presentation.

Theorem 21. If M ⊂ R3 is a complete, orientable minimal surface of total
curvature < 4π, then M is a plane.

Now if θ(M) < 3, then by proposition 15 we have that TC(M) < 4π, and
therefore M is a plane.

Lemma 22 (Pogorelov). Let M ⊂ R3 be a simply connected, minimal surface.
Suppose BR(p) is a geodesic ball in M of radius R about some point p ∈M such
that the interior of BR contains no points of ∂M , i.e. such that dist(p, ∂M) ≥
R. If A(R) := area(BR) > 4

3πR
2, then BR is unstable.
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Proof. We may assume that M = BR. To prove instability, it suffices by corol-
lary 4 to find a function u in BR with u ≡ 0 on ∂BR such that Q(u) < 0,
where

Q(u) =

∫
M

(|∇u|2 − |A|2u2) dS =

∫
M

|∇u|2 dS + 2

∫
M

Ku2 dS. (1)

The second equality holds because

4|H|2 = |A|2 + 2K

for any surface. Moreover, we used the fact that the mean curvature H vanishes
at all points for any minimal surface. Let r and θ be geodesic polar coordinates
in M centered at the point p. Thus the metric has the form

ds2 = dr2 + g2 dθ2

for some nonnegative function g(r, θ) such that

g(0, 0) = 0, gr(0, 0) = 1.

The Gauss curvature can be computed to be equal to

K = −grr
g
.

Remark 23. The above results about geodesic polar coordinates are not trivial
and should be computed and proved.

Thus the second integral in equation (1) becomes

Q2(u) := 2

∫
M

u2K dS = 2

∫ 2π

0

∫ R

0

u2Kg dr dθ

= −2

∫ 2π

0

∫ R

0

u2grr dr dθ.

Integrating by parts twice and inserting

u(R, θ) = 0, u(0, θ) = u(0, 0), gr(0, θ) = 1, g(0, θ) = 0,

gives

Q2(u) = −2

∫ 2π

0

(
u(R, θ)2gr(R, θ)− u(0, θ)2gr(0, θ)

−
(

(u2)r(R, θ)g(R, θ)− (u2)r(0, θ)g(0, θ)−
∫ R

0

(u2)rrg dr
))

dθ

= 4πu(0)2 − 2

∫ 2π

0

∫ R

0

(u2)rrg dr dθ

= 4πu(0)2 − 4

∫ 2π

0

(ur)
2g dr dθ − 4

∫ 2π

0

∫ R

0

uurrg dr dθ

= 4πu(0)2 − 4

∫
M

(ur)
2 dS − 4

∫ 2π

0

∫ R

0

uurrg dr dθ.

(2)
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Now let

u(r, θ) = u(r) =
R− r
R

,

so that u(r) decreases linearly from u(0) = 1 to u(R) = 0. Then the last integral
in (2) vanishes, and

(ur)
2 = |∇u|2 =

1

R2
,

so combining (1) and (2) gives

Q(u) = 4π − 3

R2
A(R),

which is negative if A(R) > 4
3πR

2.

Remark 24. Note that the above function u is not smooth at the origin. How-
ever, this unique problematic point does not affect the integral, as one can show
using an iterative approximation argument.

Let us now have a look at the following results.

Theorem 25 (Fischer-Colbrie/Schoen). Suppose M is an oriented minimal hy-
persurface in Rn. Then M is stable if and only if there is a positive solution
of

∆u+ |A|2u = 0

on M \ ∂M .

Proof. This is a general fact about the lowest eigenvalue of self-adjoint, second-
order elliptic operators.

Corollary 26. Let M be as in theorem 25. If M is stable, then so is its universal
cover.

Proof. Lift the function u from M to its universal cover.

We now formulate the most important result of this presentation.

Theorem 27. 1. A complete, stable, orientable minimal surface in R3 must
be a plane.

2. If M is a stable, orientable minimal surface in R3, then

|A(p)|dist(p, ∂M) ≤ C

for some C <∞.

Remark 28. The two above statements are equivalent.

7



Proof of Thm. 27. Using corollary 26, we may assume that M is simply con-
nected. Suppose by contradiction that M is not a plane. Then by corollary
20,

θ(M) ≥ 3 >
4

3
,

so
A(r)

πr2
>

4

3

for large r. But then M is unstable by lemma 22, a contradiction to the as-
sumptions.
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