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These notes follow Brian White’s notes on minimal surfaces [Whi16] on
pages 27 to 29. The main topic will be the concentration theorem 3, but
first, we look at another equivalence between a global theorem and a local
curvature estimate. The following global theorem is a consequence of the
monotonicity theorem:

Theorem 1. If M ⊆ Rn is a proper minimal smooth submanifold without
boundary and if Θ(M) ≤ 1, then M is a plane.

Proof. Take a point p in M . Then, by the monotonicity theorem and since
∂M = ∅, we have for all r > 0

1 ≤ Θ(M, p, r) ≤ Θ(M).

Thus, our assumption forces Θ(M) = 1. By the monotonicity theorem again,
this implies that M intersects ∂B(p, r) orthogonally for every r. Geometri-
cally, this means that M is invariant under dilation about the point p, which
exactly means that M is a cone with vertex p. However, M is also assumed
to be smooth, and thus M must be a union of planes (possibly with multi-
plicity) passing through p. Finally, since we have established that Θ(M) = 1,
M is in fact a single plane with multiplicity 1.

Now, we state an equivalent theorem, whose statement is local. This is a
special case of a more general result called Allard’s regularity theorem.
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Theorem 2. There exist λ > 1, ε > 0, and C < ∞ with the following
property. If M ⊆ Rn is minimal, dist(p, ∂M) ≥ R and Θ(M, p,R) ≤ λ, then

sup
q∈B(p,εR)

|A| dist(q, ∂B(p, εR)) ≤ C,

where p ∈ Rn, dist is the Euclidean distance and A denotes the second fun-
damental form.

This can be proved using theorem 1 and proceeding as in the proof of the
4π curvature estimate theorem. We will not spell out the details here.

Moreover, if M is as in the hypotheses of theorem 1, then dist(p, ∂M) ≥ R
and Θ(M, p,R) ≤ λ hold for every R and thus the second fundamental must
be zero. We can then deduce that M is a single plane with multiplicity 1 as
we did in the proof of theorem 1. This shows that theorem 2 implies theorem
1.

Now, we move onto the main topic of this talk, namely the concentration
theorem. This theorem deals with sequences of minimal surfaces with total
curvatures that are uniformly bounded, but not bounded by some λ < 4π. In
this case, we get smooth subsequential convergence except at a finite number
of points, which are those points where the curvature is concentrated. More
precisely:

Theorem 3 (Concentration theorem). Let Ω ⊆ R3 be an open subset. Sup-
pose that (Mk)k∈N ⊂ Ω are two-dimensional, oriented, and embedded minimal
surfaces. Assume that ∂Mk ⊂ ∂Ω and that there exists Λ <∞ such that the
total curvatures TC(Mk) ≤ Λ for all k ∈ N. Moreover, assume that the ar-
eas of the Mk’s are uniformly bounded in compact subsets of Ω. Then, after
passing to a subsequence there exists a set S ⊂ Ω of at most Λ

4π
points such

that the Mk’s converge locally and smoothly in Ω \ S to a limit minimal sur-
face M . Furthermore the surface M ∪ S is a smooth and embedded minimal
surface.

Remark 1. The concentration also holds when the ambient space is Rn for
n > 4 if we replace 4π with 2π at every step. This is because in higher
dimension, Osserman’s theorem and the 4π curvature estimate hold for 2π
instead of 4π
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Example 1. To illustrate what theorem 3 says, take Mk to be the catenoid
dilated by a factor 1/k. As k grows larger, this converges to a plane with
multiplicity 2, and the convergence is smooth everywhere but at the origin,
where the curvature blows up.

In order to prove the concentration theorem, we will need a few standard
concepts from functional analysis that were taken from [Str13] (in German).

Definition 1. A metric space X is called separable if it has a countable
dense subset.

We will need this concept in the specific case where X = C0
c (Rn) is the

space of compactly supported continuous functions on Rn. It is a fact that
this space is separable. This can be proven using Weierstrass approximations.

Definition 2. Let X be a normed vector space, and let X∗ denote the space
of all continuous linear maps from X to R. We say that a sequence (fk) in
X∗ w∗-converges to f ∈ X∗ if for every x ∈ X, we have fk(x)→ f(x) in R.

The theorem that we will use in the proof of theorem 3 is the so-called
Banach-Alaoglu theorem:

Theorem 4 (Banach-Alaoglu). Let X be a normed separable space, and let
(fk) ⊂ X∗ be a bounded sequence of linear operators. Then there exists a
subsequence of fk that w∗-converges to some f ∈ X∗.

We will not prove the theorem here as it is not really the topic of these
notes, but this is a really standard result in functional analysis.

The idea of the proof of theorem 3 is to use the 4π curvature estimate and
the basic compactness theorem to get the convergence that we want. But
these theorems can only be used if the uniform bound on the total curvatures
is smaller than 4π. As we have seen with the examples of the catenoids
above, the problematic points are those where the curvature blows up. The
strategy will be to construct a sequence of measures that put the mass where
the curvature is big and to use them to find those problematic points. We
need one additional concept, which we do not define in full generality.

Definition 3. A sequence of measures µk on Rn converges weakly to a mea-
sure µ if for every compactly supported continuous function f , we have∫

fdµk →
∫
fdµ.
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We are now ready for the proof of theorem 3.

Proof. We start by defining a sequence of measures on Ω: set µk(U) =
TC(Mk∩U) for any Borel set U ⊂ R3. Let us define the associated linear op-
erators Tk on the space of compactly supported continuous functions C0

c (R3)
as follows: Tk(f) =

∫
fdµk. Those linear operators are bounded in the oper-

ator norm, since the µk’s are bounded and thus we can use Banach-Alaoglu
to get a w∗-converging subsequence, which by our construction corresponds
to a weakly converging subsequence of measures. In short, by passing to a
subsequence, we can assume that the µk’s converge weakly to a limit measure
µ. Moreover, it holds by construction that µ(Ω) ≤ Λ.
Let S be the set of point p such that µ({p}) ≥ 4π. Then the finiteness of µ im-
plies that |S| ≤ Λ

4π
. Suppose that x ∈ Ω \ S. Then, µ({x}) < λ < 4π. More-

over, but outer regularity of µ, there exists a closed ball B = B(x, r) ⊂ Ω
with µ(B) < λ. This implies that TC(Mk ∩ B) = µi(B) < λ for k large
enough. Using the 4π curvature estimate (theorem 23 in [Whi16]), it follows
that the second fundamental form |Ak| is uniformly bounded on B(x, r/2).
Since we now have a local uniform bound on the second fundamental form,
we can use the basic compactness theorem (theorem 22 in [Whi16]) to get
subsequential local smooth convergence to a minimal surface M on Ω \ S.
We now show that M ∪ S is a smooth surface. Take p ∈ S. By translation
we can assume that p = 0 without loss of generality. Note that there exists
ε > 0 such that µ(B(0, ε) \ {0}) is arbitrarily small. If we dilate the surface
M about zero by a sequence of numbers tending to infinity, using the 4π
curvature estimate and the basic compactness theorem again, we can find a
subsequence that converges smoothly on R3 \ {0} to a limit minimal surface
with total curvature zero, which can only be a union of planes. Since we
assumed the Mi’s to have uniformly bounded areas on compact subsets, the
number of those planes must be finite. Indeed, since we are dilating about
0, we have that Θ(M) = Θ(0, r,M), which is finite by our assumption. This
construction shows that, for r small enough, the surface M ∩ (B(0, r) \ {0})
is topologically a finite union of punctured discs. In fact, it is possible to
show that the smooth subsequential convergence of the dilated surfaces to
planes implies that M ∩ (B(0, r) \ {0}) is even conformally a finite union
of punctured discs. Let F : D \ {0} → R3 be a conformal parametrization
for one of those punctured discs. We know from a previous talk that F is
also harmonic. Using tools from complex analysis, it is possible to show that
isolated singularities of bounded harmonic functions are removable, and thus
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F extends smoothly to the whole disc D. This shows that M ∪S is a smooth
surface by the maximum principle for minimal surfaces (see exercise sheet
4).
Finally by the basic compactness theorem in Ω \S and our previous analysis
around S, if we assume that M ⊂ R3 is not embedded (possibly with mul-
tiplicity), then portions of M must intersect each others transversely. But
then the smooth convergence Mk → M away from S implies that some of
the Mk’s also have self-intersections and thus are not be embedded. This
concludes the proof.

It the surfaces Mk are assumed to be simply connected, we get a stronger
statement:

Theorem 5. Let us assume, in the setting of the concentration theorem 3,
that the surfaces Mk ⊂ Ω ⊂ R3 are simply connected. Then S = ∅.

Proof. For a contradiction, let us assume that S contains a point p. By the
concentration theorem, the surface M ∪ {p} near p is a smooth embedded
surface. Thus we can take a small ball B around p such that ∂B ∩ M is
very nearly circular, and B ∩ S = {p}. Then, for k large enough the smooth
convergence of the Mk’s to M away from S imply that Mk ∩ ∂B is the union
of Q almost circular curves, for some multiplicity Q. This holds because
the Mk’s are embedded, as the pathological cases of perturbation of circles
transversed multiple times are excluded.

It can then be shown that Mk ∩ B is the union of simply connected
components. Since every such component has a nearly circular boundary
for k large enough, its total curvature is very small by the Gauss-Bonnet
theorem. But then the curvatures of the Mk’s are uniformly bounded and
very close to zero on compact subsets of the interior of B by the 4π curvature
estimate, which is a contradiction for subsets containing p, where the total
curvature is bigger than 4π.

The concentration theorem is only useful if it is possible to obtain uniform
bounds on the total curvature of the Mk’s. Fortunately, this is possible in
many situations. For example, suppose that the Mk ⊂ R3 all have the same
finite topological type. (For the readers familiar with algebraic topology, a
topological space X is of finite type if all homology groups Hn(X) are finitely
generated.) In particular, this implies that all the Mk’s have the same Euler
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characteristic. Furthermore, suppose that we also have reasonable boundary
curves ∂Mk, or more precisely:

sup
k

∫
∂Mk

|κ∂Mk
| ds <∞,

where κ∂Mk
denotes the curvature vector of the curve ∂Mk. Then, we have

that sup
k

TC(Mk) <∞ by the Gauss-Bonnet theorem.

To conclude, we present a theorem that makes all the necessary assump-
tions of the concentration theorem hold.

Theorem 6. Let Ω be an open subset of Rn. Let (Mk) be a family of minimal
surfaces in Ω with ∂Mk ⊂ ∂Ω. Suppose that

sup
k

genus(Mk) <∞.

Furthermore assume that

sup
k

area(Mk ∩ U) <∞, for U ⊂⊂ Ω.

Then we have that

sup
k

TC(Mk ∩ U) <∞, for U ⊂⊂ Ω,

where U ⊂⊂ Ω means U ⊂ Ω and U compact in Ω.

References

[Whi16] B. White, Introduction to minimal surface theory. Geometric anal-
ysis, 387-438, IAS/ Park City Math. Ser., 22. American Mathematical
Society, Providence, RI, 2016.

[Str13] M. Struwe, Funktionalanalysis I und II. Lecture notes, ETH Zrich,
2013/14.

6


