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The lecture follows [Whi16, pages 15-17].
We begin with a reminder about concepts and definitions which are important for the new
theorem presented in this seminar, namely Osserman’s Theorem.

Let M be a surface in R3. The Gauss map is a continuous choice of unit normal

N : M → S2

with N(p) ∈ TpM⊥ for every p in M . There are two possible choices of orientation on S2,
and the standard is given by the outward pointing unit normal. The differential

dpN : TMp → TN(p)S2 ∼= TpM

is a self-adjoint linear map and we associate to it the second fundamental form, given
by

A(v, w) = 〈v, dNp(w)〉 v, w ∈ TpM.

In particular, dN is diagonalisable and thus there exists an orthonormal basis {E1, E2} of
TpM such that dNp(E1) = λ1E1, dNp(E2) = λ2E2, where λ1, λ2 are the principal curva-
tures at p.

Further, we define the Gaussian curvature K to be the signed Jacobian of the Gauss
map, and the total (absolute) curvature is given by

TC(M) =

∫
M

|K|dS =

∫
p∈S2

#N−1(p)dp (1)

where the last inequality is justified by the area formula, since |K| = | det(dN)|.
Recall that the mean curvature

H =
1

2
tr(dN) =

λ1 + λ2
2

vanishes at all points for any minimal surface, which implies that λ2 = −λ1. Thus, if M is
minimal we have

TC(M) = −
∫
M

KdS.
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Theorem 1 (Osserman). Let M ⊂ R3 be a complete, connected, orientable minimal surface
of finite total curvature

TC(M) =

∫
M

|K|dS = −
∫
M

KdS <∞.

Then the following statements hold true.

i) M is conformally equivalent to a compact Riemann surface Σ (one-dimensional complex
manifold) minus finitely many points:

M ∼= Σ\{p1, · · · , pn}.

ii) The Gauss map extends analytically to the punctures.

iii) There exists a non-negative integer m such that for almost every v ∈ S2 exactly m

points have unit normal N = v.

iv) The total curvature of M is equal to 4πm.

v) M is proper in R3, that is, every sequence which diverges in M also diverges in R3.

We will not prove the first and the fifth statement. However, the fifth assertion may be
proved using results presented in the next seminar. Before continuing, the following obser-
vations are essential.

For a minimal surface M , dNp : TpM → TpM is linear symmetric and angle preserving.
With respect to a suitable choice of basis, its operator matrix is given by[

λ 0

0 −λ

]
.

By choosingN to be the inward pointing unit normal on S2 and thus inverting the orientation
on the arrival space TpM ∼= TN(p)S2, the corresponding matrix becomes[

λ 0

0 λ

]
.

The determinant det(dNp) = λ2 > 0 is now positive, making the map orientation preserving.
In particular, identifying S2 with the Riemann sphere C ∪ {∞} and applying the Cauchy-
Riemann equations immediately shows that for this choice of orientation, the Gauss map is
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holomorphic. We require the following theorem from complex analysis before we begin the
proof of Osserman’s Theorem.

Theorem 2 (Picard’s Theorem). Let M be a Riemann surface, and w a point in M . If
f : M\{w} → S2 is a holomorphic function with essential singularity at w, then on any
open subset containing w the function f attains all but at most two points of S2 infinitely
often.

Proof of Osserman’s Theorem. We prove three of the statements.

ii) By (i), we know M is conformally equivalent to a compact Riemann surface Σ minus
finitely many points {p1, · · · , pn}. Let U ⊂ Σ be a neighbourhood of one of the punc-
tures p. If p is a removable singularity, the Gauss map N : U\{p} → S2 is meromorphic
and therefore extends to p. Otherwise, by Picard’s theorem, N takes all but two values
in S2 infinitely many times. This would imply that

∫
U
|K|dS =∞ by Eq.(1), which is a

contradiction. Therefore, N must extend continously and analytically to U . Applying
this to all poles {p1, · · · , pn} proves the result.

iii) The degree of a continuous function between compact oriented manifolds of equal di-
mension can be thought of as the number of times the domain is ,wrapped’ around
the range under the map. Depending on orientation, this number may be positive or
negative but it is always an integer. Formally, the degree of the Gauss map is given by

deg(N) =
∑

p;N(p)=q

sign det(dNp) (2)

where q is a regular value. We can interpret this equation in the following way. In a
neighbourhood of each regular point, a smooth map is a local diffeomorphism which
is either orientation preserving or reversing. We give a positive or a negative sign to
each regular point to systemise this information. The sum of all signs is the mapping
degree. It can be shown that the degree does not depend on the choice of regular value
q (see [Mil97, Chapter 5]). By Sard’s theorem, the set of all regular values is a dense
subset of S2, while the set of critical values has Hausdorff measure zero when we view
S2 as a subspace of R3.

Our previous considerations show the Gauss map Σ→ S2 is holomorphic with respect
to the orientation on S2 induced by the inward pointing unit normal. Let m be its
mapping degree. It now follows from Eq.(2) and the above discussion that m is our
required integer.

iv) Using (iii), we may now immediately conclude that the total curvature is given by 4πm,
since

TC(M) =

∫
S2

#N−1(·)dS.
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A consequence of Osserman’s theorem is the following characterization of the plane.

Corollary 3. If M ⊂ R3 is a complete, orientable minimal surface of total curvature less
than 4π, then M is a plane.

Proof. If the total curvature is less than 4π it must be equal to zero by Osserman’s Theorem,
and thus by Eq.(1) we have det(dN) ≡ 0. For a minimal surface in R3, this implies that the
principal curvatures λ1 = −λ2 are zero at every point p in M . In particular dN ≡ 0, and
the Gauss map is therefore constant along the surface.
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