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Exercise 5.1 Let (Ω,F , P ) be a probability space with a filtration (Fk)k=0,...,T in finite discrete
time. The goal of this exercise is to explicitly construct an equivalent martingale measure Q. The
exercise closely follows pages 40 to 44 from the lecture notes.

(a) Prove that the existence of a measure Q ≈ P on F is equivalent to the existence of a pair
(Z0, D) satisfying all of the following properties.

• Z0 > 0 P -as.
• EP [Z0] = 1
• D = (Dk)k=0,...,T adapted and strictly positive stochastic process
• EP [Dk |Fk−1] = 1

(b) Let (S̃0, S̃1) be a financial market with iid returns, i.e suppose the price dynamics are given
by

S̃1
k = S1

0

k∏
j=1

Yj ; S̃0
k = (1 + r)k

Assume that the filtration is generated by the returns process Y and that F0 is P -trivial.
Our goal is to construct an equivalent measure Q by explicitly deriving a pair (Z0, D)
statisfying

• Z0 > 0 P -as.
• EP [Z0] = 1
• D = (Dk)k=0,...,T adapted and strictly positive stochastic process
• EP [Dk |Fk−1] = 1

Moreover, we want Q to be a martingale measure and thus also ask for

• EQ
[
S1

k

S1
k−1

∣∣∣Fk−1

]
= EQ

[
S̃1

k/S̃
0
k

S̃1
k−1/S̃

0
k

∣∣∣∣Fk−1

]
= EQ

[
Yk

1+r

∣∣∣Fk−1

]
= EP

[
DkYk

1+r

∣∣∣Fk−1

]
= 1

[Note that we have used Bayes theorem to relate the conditional expectation under Q to the
one under P ; see top of page 42 in your notes]
To keep things simple, let’s take Z0 = 1 which clearly satisfies the required properties. Also
assume that Dk is independent of Fk−1 (like Yk) and moreover that Dk = gk(Yk) for some
Borel-measurable function gk. Derive conditions on gk that make the measure Q defined by
the Radon-Nykodym derivative

dQ

dP
= Z0

T∏
j=1

Dj = Z0

T∏
j=1

gj(Yj)

become an equivalent martingale measure.
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For simplicity from now on we will choose gk = g for all k where g satisfies the properties derived
in the previous question. This is an admissible choice since the returns Yk are assumed to be i.i.d.
under P .

(c) From now on, suppose that we have i.i.d lognormal returns, i.e Yk = exp(σUk + b) with
random variables U1, . . . , UT i.i.d. ∼ N (0, 1). Instead of Dk = gk(Yk) = g(Yk), we here try
(equivalently) to find a function f such that Dk = f(Uk). Take f(x) := exp(αx+ β). Derive
conditions on α and β such that the measure Q defined by the Radon-Nykodym derivative

dQ

dP
= Z0

T∏
j=1

Dj = Z0

T∏
j=1

f(Uj)

become an equivalent martingale measure.

Exercise 5.2 Let (Yt)0≤t≤T be a given integrable adapted discrete-time process. Define an adapted
process (Ut)0≤t≤T by the recursion

UT = YT

Ut = max (Yt, E[Ut+1|Ft]) for 0 ≤ t ≤ T − 1

The process (Ut)0≤t≤T is called the Snell envelope of (Yt)0≤t≤T . For simplicity, we suppose in this
exercise that F0 is the trivial σ-algebra.

(a) Show that the Snell envelope of a process is the smallest supermartingale dominating that
process.

(b) Show that if Y is a supermartingale then Ut = Yt for all t, and if Y is submartingale, then
Ut = E[YT |Ft].

(c) Let τ be any stopping time taking values in {0, ..., T}. Show that the process (Ut∧τ )0≤t≤T is
a supermartingale.

Define the random time τ∗ by

τ∗ = min{t ∈ {0, ..., T} such that Ut = Yt}

(d) Show that τ∗ is a stopping time. Furthermore, show that the process (Ut∧τ∗)0≤t≤T is a
martingale and, in particular, U0 = E[Yτ∗ ]

(e) Show that U0 = sup{E[Yτ ] : stopping times 0 ≤ τ ≤ T}

(f) Conclude that τ∗ is an optimal stopping time, i.e. a solution to the problem of finding a
stopping time τ ≤ T that achieves the supremum in supτ≤T E[Yτ ].

(g) Give a financial example where this result could be used.

Exercise 5.3 This is an optional exercise. You are highly encouraged to solved it, but the results
of this exercise are not part of the exam material. This exercise guides you through an alternative
proof of the "hard" direction of the First Fundamental Theorem of Asset Pricing (also known as
Dalang-Morton-Willinger Theorem). In this exercise we will focus on the basic one-period model,
i.e we suppose that T = 1. The proof for the multi-period case is very similar but is a little more
difficult because of some technicalities involving measurability. For simplicity, we also assume that
F0 is (P -) trivial, so θ predictable means θ ∈ Rd. Moreover we also suppose that there exists a
numéraire asset.

Let (S̃0
0 , S̃

1
0) (respectively (S̃0

1 , S̃
1
1)) denote the vector of initial undiscounted prices (respectively

terminal undiscounted prices), and let (1, S1
t )t∈{0,1} be the discounted (with respect to the numéraire

asset S̃0) price process.
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(a) Define a pricing kernel (also called stochastic discount factor or state price density) as a
strictly positive random variable ρ satisfying

S̃1
0 = EP

[
ρS̃1

1
]

where P is the objective (or historical or statistical) measure of our filtered probability space
(Ω,F , P ). When the market has a numéraire, we can characterize pricing kernels in terms
of the discounted prices (1, X): the pricing kernel ρ is a positive random variable ρ > 0 in
L∞(P ) satisfying

EP
[
ρ∆S1

1
]

= 0
Show that when the market has a numéraire, the notion of a pricing kernel and that of an
EMM are essentially the same. More precisely, show that the measure Q defined by

dQ

dP
= ρ

EP [ρ]

gives an EMM.

Since we suppose the existence of a numéraire, by a general result, the market is arbitrage free
iff there is no arbitrage of the first kind. There is a technical difference between two notions of
arbitrages, but in this course we only study arbitrages of the first kind because we alsways assume
the existence of a numéraire. Moreover by question (a) the existence of a pricing kernel is equivalent
to the existence of an EMM. We thus have to show that no arbitrage (of first kind) implies the
existence of a pricing kernel ρ.

(b) Consider the function F : Rd → R ∪ {∞} defined by

F (θ) = EP
[
e−θ·∆S

1
1− 1

2 ||∆S
1
1 ||

2
]

Show that F is finite valued and smooth (C1).

(c) Suppose that there exists a minimiser θ∗ of F . Construct a pricing kernel ρ and show that
the corresponding EMM Q has a bounded Radon Nykodym derivative, i.e. dQ

dP ∈ L
∞.

(d) In this question we show that the no arbitrage (of first kind) assumption implies the existence
of a minimiser θ∗ of F .

• Let (θk)k be a minimizing sequence, i.e a sequence that satisfies

lim
k→∞

F (θk) = inf
θ∈Rd

F (θ)

Suppose that (θk)k is bounded. Show that in this case F admits a minimiser θ∗.

It remains to show that no arbitrage (of first kind) implies the existence of a bounded
minimising sequence (θk)k.
Let U = {θ ∈ Rd : θ ·∆S1

1 = 0 P-a.s} ⊆ Rd and V = U⊥ the orthogonal complement of U .

• Show that if u ∈ U and v ∈ V then F (u+ v) = F (v)

Choose a minimising sequence (θk)k. By the previous result we can assume without loss of
generality that θk ∈ V for all k (otherwise wecan construct a minimising sequence valued in
V by projecting the original sequence (θk)k on V. The obatined projected sequence is still a
minimising sequence since the projection does not change the value of the function F (·) by
the previous question). Assume for contradiction that (θk)k is unbounded, i.e after passing to
a subsequence (again we continue to denote it by (θk)k), ||θk|| → ∞. The goal of the next
questions is to use the No Arbitrage assumption to get a contradiction.
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• Since (θk)k is unbounded, we can pass to a subsequence such that ||θk|| → ∞. Define
θ̂k = θk

||θk|| .

Show that θ̂k ∈ V and ||θ̂k|| = 1.

By Bolzano-Weierstrass Theorem, the bounded sequence (θ̂k)k admits a converging subse-
quence. Let θ̂k denote this converging subsequence and let θ̂ be the limit of θ̂k.

• Show that V is a closed set and conclude that θ̂ ∈ V . Show also that θ̂ ∈ V and has unit
norm.

• Show that the sequence (F (θk))k is bounded.
• By showing that

F (θk) = EP

[(
e−θ̂k·∆S1

1

)||θk||
e−
||∆S1

1 ||
2

2

]
conclude that we must have θ̂ ·∆S1

1 ≥ 0 a.s.

• By using the no arbitrage assumption find a contradiction. Conclude that (θk)k is
bounded.
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