Non-Life Insurance: Mathematics and Statistics

Solution sheet 2

Solution 2.1 Maximum Likelihood and Hypothesis Test

(a) Since $\log Y_{1}, \ldots, \log Y_{8}$ are independent random variables, the joint density $f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$ of $\log Y_{1}, \ldots, \log Y_{8}$ is given by product of the marginal densities of $\log Y_{1}, \ldots, \log Y_{8}$. We have

$$
f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=\prod_{i=1}^{8} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right\}
$$

as $\log Y_{1}, \ldots, \log Y_{8}$ are Gaussian random variables with mean μ and variance σ^{2}.
(b) By taking the logarithm, we get

$$
\begin{aligned}
\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) & =\sum_{i=1}^{8}-\log \sqrt{2 \pi}-\log \sigma-\frac{1}{2} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}} \\
& =-8 \log \sqrt{2 \pi}-8 \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

(c) We have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-8 \log \sigma$ for all $\mu \in \mathbb{R}$. Hence, independently of the value of $\mu, \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $\sigma^{2} \rightarrow \infty$. Moreover, since for example $x_{1} \neq x_{2}$, there exists a $c>0$ with $\sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}>c$ and thus $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-8 \log \sigma-\frac{c}{2 \sigma^{2}}$ for all $\mu \in \mathbb{R}$. Since $\frac{c}{2 \sigma^{2}}$ goes much faster to ∞ than $8 \log \sigma$ goes to $-\infty$ if $\sigma^{2} \rightarrow 0$, we have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $\sigma^{2} \rightarrow 0$, independently of μ. Finally, if $\sigma^{2} \in\left[c_{1}, c_{2}\right]$ for some $0<c_{1}<c_{2}$, we have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-8 \log c_{1}-\frac{1}{2 c_{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}$. Hence, independently of the value of σ^{2} in the interval $\left[c_{1}, c_{2}\right], \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $|\mu| \rightarrow \infty$. Since $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$ is continuous in μ and σ^{2}, we can conclude that it attains its global maximum somewhere in $\mathbb{R} \times \mathbb{R}_{>0}$. Thus, $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ as defined on the exercise sheet have to satisfy the first order conditions

$$
\begin{aligned}
\left.\frac{\partial}{\partial \mu} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)\right|_{\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)} & =0 \quad \text { and } \\
\left.\frac{\partial}{\partial\left(\sigma^{2}\right)} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)\right|_{\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)} & =0 .
\end{aligned}
$$

We calculate

$$
\frac{\partial}{\partial \mu} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)
$$

which is equal to 0 if and only if $\mu=\frac{1}{8} \sum_{i=1}^{8} x_{i}$. Moreover, we have

$$
\frac{\partial}{\partial\left(\sigma^{2}\right)} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=-\frac{8}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}=\frac{1}{2 \sigma^{2}}\left[-8+\frac{1}{\sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}\right]
$$

which is equal to 0 if and only if $\sigma^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}$. Since there is only tuple in $\mathbb{R} \times \mathbb{R}_{>0}$ that satisfies the first order conditions, we conclude that

$$
\widehat{\mu}=\frac{1}{8} \sum_{i=1}^{8} x_{i}=7 \quad \text { and } \quad \widehat{\sigma}^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-\widehat{\mu}\right)^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-7\right)^{2}=7
$$

Note that the MLE $\widehat{\sigma}^{2}$ (considered as an estimator) is not unbiased. Indeed, if we replace x_{1}, \ldots, x_{8} by independent Gaussian random variables X_{1}, \ldots, X_{8} with expectation $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$, and write $\widehat{\mu}$ for $\frac{1}{8} \sum_{i=1}^{8} X_{i}$, we can calculate

$$
\mathbb{E}\left[\widehat{\sigma}^{2}\right]=\mathbb{E}\left[\widehat{\sigma}^{2}\left(X_{1}, \ldots, X_{8}\right)\right]=\mathbb{E}\left[\frac{1}{8} \sum_{i=1}^{8}\left(X_{i}-\widehat{\mu}\right)^{2}\right]=\frac{1}{8} \mathbb{E}\left[\sum_{i=1}^{8}\left(X_{i}^{2}-2 X_{i} \widehat{\mu}+\widehat{\mu}^{2}\right)\right]
$$

By noting that $\sum_{i=1}^{8} X_{i}=8 \widehat{\mu}$ and that $\mathbb{E}\left[X_{1}^{2}\right]=\cdots=\mathbb{E}\left[X_{8}^{2}\right]$, we get

$$
\mathbb{E}\left[\widehat{\sigma}^{2}\right]=\frac{1}{8} \mathbb{E}\left[\sum_{i=1}^{8} X_{i}^{2}-2 \cdot 8 \cdot \widehat{\mu}^{2}+8 \widehat{\mu}^{2}\right]=\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[\widehat{\mu}^{2}\right]=\sigma^{2}+\mathbb{E}\left[X_{1}\right]^{2}-\operatorname{Var}(\widehat{\mu})-\mathbb{E}[\widehat{\mu}]^{2}
$$

By inserting

$$
\begin{aligned}
\operatorname{Var}(\widehat{\mu}) & =\operatorname{Var}\left(\frac{1}{8} \sum_{i=1}^{8} X_{i}\right)=\left(\frac{1}{8}\right)^{2} \sum_{i=1}^{8} \operatorname{Var}\left(X_{i}\right)=\frac{1}{8} \sigma^{2} \quad \text { and } \\
\mathbb{E}[\widehat{\mu}]^{2} & =\mathbb{E}\left[\frac{1}{8} \sum_{i=1}^{8} X_{i}\right]^{2}=\left(\frac{1}{8} \sum_{i=1}^{8} \mathbb{E}\left[X_{i}\right]\right)^{2}=\mathbb{E}\left[X_{1}\right]^{2}
\end{aligned}
$$

we can conclude that

$$
\mathbb{E}\left[\widehat{\sigma}^{2}\right]=\sigma^{2}+\mathbb{E}\left[X_{1}\right]^{2}-\frac{1}{8} \sigma^{2}-\mathbb{E}\left[X_{1}\right]^{2}=\frac{7}{8} \sigma^{2} \neq \sigma^{2}
$$

i.e. $\widehat{\sigma}^{2}$ is not unbiased.
(d) Since the logarithms of the claim amounts are assumed to follow a Gaussian distribution and the variance is unknown, we perform a t-test. Under H_{0}, we have $\mu=6$. Thus, the test statistic is given by

$$
T=T\left(\log Y_{1}, \ldots, \log Y_{8}\right)=\sqrt{8} \frac{\frac{1}{8} \sum_{i=1}^{8} \log Y_{i}-6}{\sqrt{S^{2}}}
$$

where

$$
S^{2}=\frac{1}{7} \sum_{i=1}^{8}\left(\log Y_{i}-\frac{1}{8} \sum_{i=1}^{8} \log Y_{i}\right)^{2}
$$

Note that S^{2} is an unbiased estimator for the variance σ^{2} of the logarithmic claim sizes. Under H_{0}, T follows a Student- t distribution with 7 degrees of freedom. With the data given on the exercise sheet, the random variable S^{2} attains the value

$$
\frac{1}{7} \sum_{i=1}^{8}\left(x_{i}-\frac{1}{8} \sum_{i=1}^{8} x_{i}\right)^{2}=\frac{1}{7} \sum_{i=1}^{8}\left(x_{i}-7\right)^{2}=8
$$

Thus, for T we get the observation

$$
T\left(x_{1}, \ldots, x_{8}\right)=\sqrt{8} \frac{\frac{1}{8} \sum_{i=1}^{8} x_{i}-6}{\sqrt{S^{2}}}=\sqrt{8} \frac{7-6}{\sqrt{8}}=1
$$

The probability under H_{0} to observe a T that is at least as extreme as the observation 1 we got above is

$$
\mathbb{P}[|T| \geq 1]=\mathbb{P}[T \geq 1]+\mathbb{P}[T \leq-1]=1-\mathbb{P}[T \leq 1]+1-\mathbb{P}[T \leq 1]=2-2 \mathbb{P}[T \leq 1]
$$

where we used the symmetry of the Student- t distribution around 0 , i.e. $\mathbb{P}[T \leq-1]=$ $1-\mathbb{P}[T \leq 1]$. The probability $\mathbb{P}[T \leq 1]$ is approximately 0.84 , and the p-value is given by

$$
\mathbb{P}[|T| \geq 1]=2-2 \mathbb{P}[T \leq 1] \approx 2-2 \cdot 0.84=0.32
$$

This p-value is fairly high, and we conclude that we can not reject the null hypothesis, for example, at significance level of 5% or 1%.

Solution 2.2 Chebychev's Inequality and Law of Large Numbers

(a) We have $\mu=\mathbb{E}\left[X_{1}\right]=1^{\prime} 000 \cdot 0.1+0 \cdot 0.9=100$.
(b) For $n=1$ we get

$$
\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|=\left|X_{1}-100\right|= \begin{cases}900, & \text { with probability } 0.1 \\ 100, & \text { with probability } 0.9\end{cases}
$$

As both values 900 and 100 are bigger than $0.1 \mu=10$, we conclude that $p(1)=1$. In particular, if we only have $n=1$ risk in our portfolio, then the corresponding claim amount deviates from the mean claim size by at least 10% with probability equal to 1 .
(c) For the n i.i.d. risks X_{1}, \ldots, X_{n} we define

$$
S(n)=\sum_{i=1}^{n} \frac{X_{i}}{1^{\prime} 000}
$$

to be the corresponding (random) number of bikes stolen. We note that $S(n)$ has a binomial distribution with parameters n and $p=0.1$. In particular, we have

$$
\mathbb{P}[S(n)=k]=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

for all $k \in\{0, \ldots, n\}$. For $n \in \mathbb{N}$ we can now write

$$
\begin{aligned}
p(n) & =\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq 0.1 \mu\right]=1-\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|<0.1 \mu\right] \\
& =1-\mathbb{P}\left[-0.1 \mu<\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu<0.1 \mu\right]=1-\mathbb{P}\left[0.9 n \mu<\sum_{i=1}^{n} X_{i}<1.1 n \mu\right] \\
& =1-\mathbb{P}\left[\frac{0.9 n \mu}{1^{\prime} 000}<\sum_{i=1}^{n} \frac{X_{i}}{1^{\prime} 000}<\frac{1.1 n \mu}{1^{\prime} 000}\right]=1-\mathbb{P}\left[\frac{0.9 n \mu}{1^{\prime} 000}<S(n)<\frac{1.1 n \mu}{1^{\prime} 000}\right]
\end{aligned}
$$

For $n=1 ’ 000$ we get

$$
\begin{aligned}
p\left(1^{\prime} 000\right) & =1-\mathbb{P}\left[\frac{0.9 \cdot 1^{\prime} 000 \cdot 100}{1^{\prime} 000}<S\left(1^{\prime} 000\right)<\frac{1.1 \cdot 1^{\prime} 000 \cdot 100}{1^{\prime} 000}\right] \\
& =1-\mathbb{P}\left[90<S\left(1^{\prime} 000\right)<110\right] \\
& =1-\sum_{k=91}^{109}\binom{1^{\prime} 000}{k} 0.1^{k} 0.9^{1^{\prime} 000-k} \\
& \approx 0.32
\end{aligned}
$$

Thus, if we have $n=1^{\prime} 000$ risks in our portfolio, then the sample mean of the claim amounts deviates from the mean claim size by at least 10% with a probability of 0.32 . In particular, diversification led to a reduction of this probability.
(d) As

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{1}\right]=\mu
$$

and, using the independence of X_{1}, \ldots, X_{n},

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) & =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n} \operatorname{Var}\left(X_{1}\right)=\frac{1}{n} \mathbb{E}\left[\left(X_{1}-\mu\right)^{2}\right] \\
& =\frac{1}{n}\left(900^{2} \cdot 0.1+100^{2} \cdot 0.9\right)=\frac{90^{\prime} 000}{n}
\end{aligned}
$$

Chebychev's inequality leads to

$$
p(n)=\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq 0.1 \mu\right] \leq \frac{\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)}{(0.1 \mu)^{2}} \frac{90^{\prime} 000}{n(0.1 \mu)^{2}}=\frac{900}{n}
$$

We have

$$
\frac{900}{n}<0.01 \quad \Longleftrightarrow \quad n>90^{\prime} 000
$$

This implies that Chebychev's inequality guarantees that if we have more than 90 ' 000 risks, then the probability that the sample mean of the claim amounts deviates from the mean claim size by at least 10% is smaller than 1%. However, we remark that Chebychev's inequality is very crude. In fact, the true minimum number n of risks such that $p(n)<0.01$ is given by $n \approx 6^{\prime} 000$, approximately, while for $n=90^{\prime} 000$ we basically have $p(n) \approx 0$.
(e) We have that X_{1}, X_{2}, \ldots are i.i.d. and that $\mathbb{E}\left[\left|X_{1}\right|\right]=\mathbb{E}\left[X_{1}\right]=\mu<\infty$. Thus, we can apply the strong law of large numbers, and we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \longrightarrow \mathbb{E}\left[X_{1}\right]=\mu=100, \quad \mathbb{P} \text {-a.s. }
$$

Solution 2.3 Central Limit Theorem

(a) Let σ^{2} be the variance of the claim sizes and $x>0$. We have

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right|<\frac{x}{\sqrt{n}}\right] & =\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu<\frac{x}{\sqrt{n}}\right]-\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu \leq-\frac{x}{\sqrt{n}}\right] \\
& =\mathbb{P}\left[\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma}<\frac{x}{\sigma}\right]-\mathbb{P}\left[\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma} \leq-\frac{x}{\sigma}\right] \\
& =\mathbb{P}\left[Z_{n}<\frac{x}{\sigma}\right]-\mathbb{P}\left[Z_{n} \leq-\frac{x}{\sigma}\right]
\end{aligned}
$$

where

$$
Z_{n}=\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma}
$$

According to the Central Limit Theorem, Z_{n} converges in distribution to a standard Gaussian random variable. Hence, if we write Φ for the distribution function of a standard Gaussian random variable, we have the approximation

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right|<\frac{x}{\sqrt{n}}\right] \approx \Phi\left(\frac{x}{\sigma}\right)-\Phi\left(-\frac{x}{\sigma}\right)=2 \Phi\left(\frac{x}{\sigma}\right)-1
$$

where we used that $\Phi\left(-\frac{x}{\sigma}\right)=1-\Phi\left(\frac{x}{\sigma}\right)$. On the one hand, as we are interested in a probabilty of at least 95%, we have to choose $x>0$ such that $2 \Phi\left(\frac{x}{\sigma}\right)-1=0.95$. We have

$$
2 \Phi\left(\frac{x}{\sigma}\right)-1=0.95 \quad \Longleftrightarrow \quad \Phi\left(\frac{x}{\sigma}\right)=0.975
$$

Using $\Phi^{-1}(0.975)=1.96$, this implies that

$$
\frac{x}{\sigma}=1.96
$$

It follows that

$$
\begin{equation*}
x=1.96 \cdot \sigma=1.96 \cdot \operatorname{Vco}\left(Y_{1}\right) \cdot \mu=1.96 \cdot 4 \cdot \mu \tag{1}
\end{equation*}
$$

On the other hand, as we want the deviation of the empirical mean from μ to be less than 1%, we set

$$
\frac{x}{\sqrt{n}}=0.01 \cdot \mu
$$

which implies

$$
\begin{equation*}
n=\frac{x^{2}}{0.01^{2} \cdot \mu^{2}} \tag{2}
\end{equation*}
$$

Combining (1) and (2), we conclude that

$$
n^{\mathrm{CLT}}=\frac{(1.96 \cdot 4 \cdot \mu)^{2}}{0.01^{2} \cdot \mu^{2}}=1.96^{2} \cdot 4^{2} \cdot 10^{\prime} 000=614^{\prime} 656
$$

(b) In this part we use Chebychev's inequality instead of the Central Limit Theorem in order to derive a minimum number of claims $n^{\text {Che }}$ such that with probability of at least 95% the deviation of the sample mean $\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ from the mean claim size μ is less than 1%. We have

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right|<0.01 \mu\right] \geq 0.95 \quad \Longleftrightarrow \quad \mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right| \geq 0.01 \mu\right] \leq 0.05
$$

Similarly as in Exercise 2.2 we apply Chebychev's inequality to get

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right| \geq 0.01 \mu\right] \leq \frac{\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)}{(0.01 \mu)^{2}}=\frac{\operatorname{Var}\left(Y_{1}\right)}{n \cdot 0.01^{2} \cdot \mu^{2}}=\frac{\operatorname{Vco}\left(Y_{1}\right)^{2}}{n \cdot 0.01^{2}}=\frac{160^{\prime} 000}{n}
$$

We have

$$
\frac{160^{\prime} 000}{n} \leq 0.05 \quad \Longleftrightarrow \quad n \geq 33^{\prime} 200^{\prime} 000
$$

Thus, we get

$$
n^{\mathrm{Che}}=3^{\prime} 200^{\prime} 000>614^{\prime} 656=n^{\mathrm{CLT}}
$$

This comparison confirms that Chebychev's inequality is rather crude, see also Exercise 2.2.

Solution 2.4 Conditional Distribution and Variance Decomposition

(a) First, we write M_{Θ} for the moment generating function of Θ. As Θ follows an exponential distribution with parameter $\lambda>0$, we know from Exercise 1.2 that

$$
M_{\Theta}(r)=\mathbb{E}\left[e^{r \Theta}\right]=\frac{\lambda}{\lambda-r}
$$

for all $r<\lambda$. As $-v<0<\lambda$, we calculate

$$
\mathbb{P}[N=0]=\mathbb{E}[\mathbb{P}[N=0 \mid \Theta]]=\mathbb{E}\left[e^{-\Theta v}\right]=M_{\Theta}(-v)=\frac{\lambda}{\lambda+v}
$$

(b) According to the remark on the exercise sheet, we have $\mathbb{E}[N \mid \Theta]=\Theta v$. The tower property of conditional expectation then leads to

$$
\mathbb{E}[N]=\mathbb{E}[\mathbb{E}[N \mid \Theta]]=\mathbb{E}[\Theta v]=\frac{v}{\lambda}
$$

as the expectation of an exponential distribution with parameter $\lambda>0$ is equal to $\frac{1}{\lambda}$, see Exercise 1.2.
(c) Note that

$$
\mathbb{E}\left[N^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[N^{2} \mid \Theta\right]\right]=\mathbb{E}\left[\operatorname{Var}(N \mid \Theta)+\mathbb{E}[N \mid \Theta]^{2}\right]=\mathbb{E}\left[\Theta v+(\Theta v)^{2}\right]=\frac{v}{\lambda}+\frac{2 v^{2}}{\lambda^{2}}<\infty
$$

where in the third equation we used that the expectation and the variance of a Poisson distribution are equal to its frequency parameter, and in the fourth equation that the second moment of an exponential distribution with parameter $\lambda>0$ is equal to $\frac{2}{\lambda^{2}}$, see Exercise 1.2. In particular, the second moment of N, and thus the variance $\operatorname{Var}(N)$, exist. Now we have

$$
\mathbb{E}[\operatorname{Var}(N \mid \Theta)]=\mathbb{E}\left[\mathbb{E}\left[N^{2} \mid \Theta\right]-(\mathbb{E}[N \mid \Theta])^{2}\right]=\mathbb{E}\left[N^{2}\right]-\mathbb{E}\left[(\mathbb{E}[N \mid \Theta])^{2}\right]
$$

and

$$
\operatorname{Var}(\mathbb{E}[N \mid \Theta])=\mathbb{E}\left[(\mathbb{E}[N \mid \Theta])^{2}\right]-\mathbb{E}[\mathbb{E}[N \mid \Theta]]^{2}=\mathbb{E}\left[(\mathbb{E}[N \mid \Theta])^{2}\right]-\mathbb{E}[N]^{2}
$$

Combining these two results, we get the variance decomposition formula

$$
\mathbb{E}[\operatorname{Var}(N \mid \Theta)]+\operatorname{Var}(\mathbb{E}[N \mid \Theta])=\mathbb{E}\left[N^{2}\right]-\mathbb{E}[N]^{2}=\operatorname{Var}(N)
$$

Using this formula, we can calculate

$$
\operatorname{Var}(N)=\mathbb{E}[\operatorname{Var}(N \mid \Theta)]+\operatorname{Var}(\mathbb{E}[N \mid \Theta])=\mathbb{E}[\Theta v]+\operatorname{Var}(\Theta v)=\frac{v}{\lambda}+\frac{v^{2}}{\lambda^{2}}
$$

where in the last equation we used that the variance of an exponential distribution with parameter $\lambda>0$ is equal to $\frac{1}{\lambda^{2}}$, see Exercise 1.2. In particular, we have

$$
\operatorname{Var}(N)=\frac{v}{\lambda}+\frac{v^{2}}{\lambda^{2}}>\frac{v}{\lambda}=\mathbb{E}[N]
$$

i.e. contrary to the (unconditional) Poisson distribution, the random variable N has a variance which is bigger than the expectation.
Remark: The variance decomposition formula also holds in its general form

$$
\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}])
$$

where X is a square-integrable random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} any sub- σ-algebra of \mathcal{F}.

