
ETH Zürich, D-MATH
HS 2019
Prof. Dr. Mario V. Wüthrich

Coordinator
Andrea Gabrielli

Non-Life Insurance: Mathematics and Statistics
Solution sheet 8

Solution 8.1 Panjer Algorithm

For the expected yearly claim amount π0 we have

π0 = E[S] = E[N]E[Y1] = 1 · E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2

2

}
≈ 4’124.

Let Y +
i denote the discretized claim sizes using a span of s = 10, where we put all the probability

mass to the upper end of the intervals. Note that k = 10s. If we write gl = P[Y +
1 = sl] for all l ∈ N,

then we have
g1 = g2 = · · · = g10 = 0,

since P[Y +
1 ≤ 10s] = P[k + Z ≤ 10s] = P[Z ≤ 0] = 0. For all l ≥ 11 we get

gl = P[Y +
1 = sl] = P[Y +

1 = k + s(l − 10)] = P[k + s(l − 11) < Y1 ≤ k + s(l − 10)]
= P[Y1 ≤ k + s(l − 10)]− P[Y1 ≤ k + s(l − 11)] = P[Z ≤ s(l − 10)]− P[Z ≤ s(l − 11)]

= Φ
(

log[s(l − 10)]− µ
σ

)
− Φ

(
log[s(l − 11)]− µ

σ

)
,

where Φ is the distribution function of the standard Gaussian distribution and where we define
log 0 = −∞. From now on we replace the original claim sizes Yi with the discretized claim sizes
Y +
i , but, by a slight abuse of notation, we still write S for the yearly claim amount.

Note that N ∼ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see Corollary 4.8
of the lecture notes (version of March 20, 2019). Applying the Panjer algorithm given in Theorem
4.9 of the lecture notes (version of March 20, 2019), we have for r ∈ N0

fr
def.= P[S = sr] =

{
P[N = 0], for r = 0,∑r
l=1

l
rglfr−l, for r > 0.

Since the yearly amount that the client has to pay by himself is given by

Sins = min{S, d}+ min{α · (S − d)+,M} = min{S, d}+ α ·min
{

(S − d)+,
M

α

}
,

M/α = 7’000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = f950. Here we limit ourselves to determine the values of f0, . . . , f12
to illustrate how the algorithm works. We have

f0 = P[N = 0] = e−1 ≈ 0.37

and
f1 = f2 = · · · = f10 = 0,

since g1 = g2 = · · · = g10 = 0. For r = 11 and r = 12 we get

f11 =
11∑
l=1

l

11glf11−l = g11f0 =
[
Φ
(

log s− µ
σ

)
− Φ

(
log 0− µ

σ

)]
e−1 ≈ 7.089 · 10−9

Updated: November 4, 2019 1 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

and

f12 =
12∑
l=1

l

12glf12−l = g12f0 =
[
Φ
(

log 2s− µ
σ

)
− Φ

(
log s− µ

σ

)]
e−1 ≈ 2.786 · 10−7.

Using the discretized claim sizes, the yearly expected amount πins paid by the customer is given by

πins = E[Sins] = E [min{S, d}] + αE
[
min

{
(S − d)+,

M

α

}]
,

where we have

E [min{S, d}] =
d/s∑
r=0

frsr + d

1−
d/s∑
r=0

fr

 = d+
d/s∑
r=0

fr(sr − d)

and

E
[
min

{
(S − d)+,

M

α

}]
=

d/s+M/sα∑
r=d/s+1

fr(sr − d) + M

α

1−
d/s+M/sα∑

r=0
fr

= M

α
+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr.

Therefore, we get

πins = d+
d/s∑
r=0

fr(sr − d) + α

M
α

+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr

= d+M +

d/s∑
r=0

fr(sr − d−M) +
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

)
.

Finally, if the customer has chosen franchise d, then the monthly pure risk premium π is given by

π = π0 − πins

12

= 1
12

k + exp
{
µ+ σ2

2

}
− d−M −

d/s∑
r=0

fr(sr − d−M)−
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

) .
In the end, we get the following monthly pure risk premiums π for the different franchises d:

franchise d 300 500 1’000 1’500 2’000 2’500
monthly pure risk premium π 307 297 274 253 233 216

Table 1: Monthly pure risk premiums π for the different franchises d.

More generally, the monthly pure risk premium π as a function of the franchise d, which is allowed
to vary between 300 CHF and 2’500 CHF, is given in Figure 1. The R code used to calculate the
values in Table 1 and to generate Figure 1 is given in Listings 1 and 2. Note that these monthly
premiums only represent pure risk premiums. In order to get the premiums that the customer has
to pay in the end, we would need to add an appropriate risk-loading, which may vary between
different health insurance companies.

Updated: November 4, 2019 2 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 1: R code for Exercise 8.1 (Function to calculate risk premium).
1 KK_premium <- function (lambda , mu , sigma2 , span , shift){
2 M <- 9500
3 m <- floor (M/span)
4 k0 <- shift /span
5 g_min <- array (0, dim=c(m+1 ,1)) ### mass put to the lower end of the interval
6 for (k in (k0 +1):(m +1)){
7 g_min [k ,1] <- pnorm (log ((k-k0)* span), mean=mu , sd=sqrt(sigma2))- pnorm (log ((k-k0 -1)* span),
8 mean=mu , sd=sqrt(sigma2))
9 }

10 g_max <- array (0, dim=c(m+1 ,1)) ### mass is put to the upper end of the interval
11 g_max [2:(m+1) ,1] <- g_min [1:m ,1]
12 f1 <- matrix (0, nrow=m+1, ncol =3) ### probability to get zero claims
13 f1 [1 ,1] <- exp(- lambda *(1 - g_min [1 ,1]))
14 f1 [1 ,2] <- exp(- lambda *(1 - g_max [1 ,1]))
15 h1 <- matrix (0, nrow=m, ncol =3) ### for values "l*g_{l}" of the discretized claim sizes
16 for (i in 1:m){
17 h1[i ,1] <- g_min [i+1 ,1]*(i+1)
18 h1[i ,2] <- g_max [i+1 ,1]*(i+1)
19 }
20 for (r in 1:m){ ### Panjer algorithm (a=0 and b= lambda *v, which is just lambda here)
21 f1[r+1 ,1] <- lambda /r*(t(f1 [1:r ,1])%*% h1[r:1 ,1])
22 f1[r+1 ,2] <- lambda /r*(t(f1 [1:r ,2])%*% h1[r:1 ,2])
23 f1[r+1 ,3] <- r*span
24 }
25 m1 <- 2500 ### maximal franchise
26 m0 <- 300 ### minimal franchise
27 i1 <- floor (m1/span +1) ### number of iterations to m1
28 i0 <- floor (m0/span +1) ### number of iterations to m0
29 franchise <- array (NA , c(i1 ,3))
30 for (i in i0:i1){
31 franchise [i ,1] <- f1[i ,3] ### this represents the franchise
32 franchise [i ,2] <- sum(f1 [1:i ,1]* f1 [1:i ,3])+ f1[i ,3]*(1 - sum(f1 [1:i ,1]))
33 franchise [i ,2] <- franchise [i ,2]+ sum(f1 [(i+1): floor (i +7000/ span) ,1]
34 *f1 [2: floor (7000/ span +1) ,3])*0.1
35 +700*(1 - sum(f1 [1: floor (i +7000/ span) ,1]))
36 franchise [i ,3] <- sum(f1 [1:i ,2]* f1 [1:i ,3])+ f1[i ,3]*(1 - sum(f1 [1:i ,2]))
37 franchise [i ,3] <- franchise [i ,3]+ sum(f1 [(i+1): floor (i +7000/ span) ,2]
38 *f1 [2: floor (7000/ span +1) ,3])*0.1+700*(1 - sum(f1 [1: floor (i +7000/ span) ,2]))
39 }
40 price <- array (NA , c(i1 , 3))
41 price [,1] <- franchise [,1] ### this represents the franchise
42 price [,2:3] <- (lambda *(exp(mu+ sigma2 /2)+ shift)- franchise [,2:3])/12
43 price
44 }

500 1000 1500 2000 2500

22
0

24
0

26
0

28
0

30
0

Monthly pure risk premium

Franchise

M
on

th
ly

 p
ur

e
ris

k
pr

em
iu

m

Figure 1: Plot of the monthly pure risk premium π as a function of the franchise d.

Updated: November 4, 2019 3 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 2: R code for Exercise 8.1 (Risk premium).
1 require (stats)
2 require (MASS)
3
4 ### Run the function KK_premium
5 lambda <- 1
6 mu <- 7.8
7 sigma2 <- 1
8 span <- 10
9 shift <- 100

10 price <- KK_premium (lambda , mu , sigma2 , span , shift)
11
12 ### Plot the monthly pure risk premium as a function of the franchise
13 plot(x= price [,1], y= price [,2], lwd =2, col =" blue", type=’l’, ylab =" Monthly pure risk premium ",
14 xlab =" Franchise ", main =" Monthly pure risk premium ", cex.lab =1.25 , cex.main =1.25 ,
15 cex.axis =1.25)
16 points (x=c(300 ,500 , 1000 , 1500 , 2000 , 2500) ,
17 y= price [c(300 ,500 , 1000 , 1500 , 2000 , 2500)/ span +1 ,3] , pch =19 , col =" orange ")
18 lines (x=c(300 ,300) , y=c(0, price [300/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
19 lines (x=c(500 ,500) , y=c(0, price [500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
20 lines (x=c(1000 ,1000) , y=c(0, price [1000/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
21 lines (x=c(1500 ,1500) , y=c(0, price [1500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
22 lines (x=c(2000 ,2000) , y=c(0, price [2000/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
23 lines (x=c(2500 ,2500) , y=c(0, price [2500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
24
25 ### Give the monthly pure risk premiums for the six franchises listed on the exercise sheet
26 round (price [floor (c(300 , 500 , 1000 , 1500 , 2000 , 2500)/ span +1) ,2])
27 round (price [floor (c(300 , 500 , 1000 , 1500 , 2000 , 2500)/ span +1) ,3])

Solution 8.2 Monte Carlo Simulations

(a) We assume that for this comparably simple problem with no heavy tails 100’000 Monte Carlo
simulations are enough to provide an empirical distribution function of S which is close to
the true distribution function of S. The R codes used for part (a) are given in Listings 3 - 6.

Listing 3: R code for Exercise 8.2 (a) (Monte Carlo simulations).
1 compound . poisson . distribution <- Vectorize (function (n, lambdav , shape , rate){
2 number .of. claims <- rpois (n=n, lambda = lambdav)
3 sum(rgamma (n= number .of.claims , shape =shape , rate=rate))
4 },"n")
5 n <- 100000
6 lambdav <- 1000
7 shape <- 100
8 rate <- 1/10
9 set.seed (100)

10 claims <- compound . poisson . distribution (rep (1,n), lambdav , shape , rate)

900000 1050000

0.
0

0.
4

0.
8

Empirical distribution function

Sampled values

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Monte Carlo
normal approx.

900000 1050000

0.
0

0.
4

0.
8

Empirical distribution function

Sampled values

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Monte Carlo
transl. gamma

900000 1050000

0.
0

0.
4

0.
8

Empirical distribution function

Sampled values

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Monte Carlo
transl. log−normal

Figure 2: Comparison of the empirical distribution function of S resulting from 100’000 Monte
Carlo simulations to the approximate distribution functions when using the normal (left), the
translated gamma (middle) and the translated log-normal (right) approximation.

Updated: November 4, 2019 4 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

In Figure 2 we compare the empirical distribution function of S resulting from 100’000
Monte Carlo simulations to the approximate distribution functions when using the normal
(left), the translated gamma (middle) and the translated log-normal (right) approximation.
From these plots we cannot spot any differences between the various distribution functions.
In Figure 3 we consider the log-log plot of the 100’000 Monte Carlo simulations of S and
compare it to the normal (left), the translated gamma (middle) and the translated log-normal
(right) approximation. We observe that all three approximations have a rather good fit to
the tail of the distribution of S, but the translated gamma and the translated log-normal
approximation seem slightly more accurate than the normal approximation. We conclude
that in the absence of heavy tailed distributions the translated gamma and the translated
log-normal approximation are very convincing in this example. Moreover, the skewness of S is
small enough (ςS ≈ 0.0321, see Exercise 7.4) and the expected number of claims large enough
(λv = 1’000, see Exercise 7.3) for the normal approximation to be a valid approximation, too.

13.70 13.80 13.90

−
12

−
8

−
4

0

Log−log plot

log(sampled values)lo
g(

1−
em

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n)

Monte Carlo
normal approx.

13.70 13.80 13.90

−
12

−
8

−
4

0
Log−log plot

log(sampled values)lo
g(

1−
em

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n)

Monte Carlo
transl. gamma

13.70 13.80 13.90

−
12

−
8

−
4

0

Log−log plot

log(sampled values)lo
g(

1−
em

pi
ric

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n)

Monte Carlo
transl. log−normal

Figure 3: Log-log plot of the 100’000 Monte Carlo simulations of S compared to the normal (left),
the translated gamma (middle) and the translated log-normal (right) approximation.

Listing 4: R code for Exercise 8.2 (a) (Normal approximation).
1 mu <- lambdav * shape /rate
2 sigma <- sqrt(lambdav * shape *(shape +1)/(rate ^2))
3 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
4 plot(claims [order (claims)], 1:n/(n+1) , xlim=c(min(claims),max(claims)), type ="l", col =" red",
5 main =" Empirical distribution function ", xlab =" Sampled values ",
6 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
7 lines (claims [order (claims)], pnorm ((claims [order (claims)]) ,mu , sigma))
8 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),
9 legend =c(" Monte Carlo "," normal approx . "), cex =1)

10 plot(log(claims [order (claims)]) , log (1 -1:n/(n+1)) , xlim=c(min(log(claims)), max(log(claims))) ,
11 ylim=c(min(log (1-n/(n+1)) , log (1- pnorm ((claims [order (claims)]) ,mu , sigma))) ,0) , type ="l",
12 col =" red", main ="Log -log plot", xlab =" log(sampled values)",
13 ylab =" log (1- empirical distribution function)", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 ,
14 lwd =2)
15 lines (log(claims [order (claims)]) , log (1- pnorm ((claims [order (claims)]) ,mu , sigma)), col =" black ")
16 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
17 legend =c(" Monte Carlo "," normal approx . "), cex =1)

(b) Replicating 10’000 Monte Carlo simulations 100 times already requires some time. This is
also the reason why we chose 10’000 as maximum number of simulations and not 100’000 as in
part (a). Note that every single time we use Monte Carlo simulations to derive quantities like
for example the quantiles q0.95 and q0.99, we get different results. This is something one needs
to be aware of, and it is in contrast to the normal, the translated gamma and the translated
log-normal approximation. In Figure 4 we show the densities of the 100 quantiles q0.95 (left)
and q0.99 (right) resulting from Listing 7 where we replicate the n ∈ {100, 1’000, 10’000}
Monte Carlo simulations 100 times. We see that increasing the number of simulations n for
every replication, the uncertainty regarding the quantiles q0.95 and q0.99 is reduced.

Updated: November 4, 2019 5 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 5: R code for Exercise 8.2 (a) (Translated gamma approximation).
1 skews <- (lambdav * shape *(shape +1)*(shape +2)/ rate ^3)/(lambdav * shape *(shape +1)/ rate ^2)^(3/2)
2 shape2 <- 4/ skews ^2
3 rate2 <- sqrt(shape2 /(lambdav * shape *(shape +1)/ rate ^2))
4 k <- lambdav * shape /rate - shape2 / rate2
5 plot(claims [order (claims)], 1:n/(n+1) , xlim=c(min(claims),max(claims)), type ="l", col =" red",
6 main =" Empirical distribution function ", xlab =" Sampled values ",
7 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
8 lines (claims [order (claims)], pgamma ((claims [order (claims)]) -k, shape =shape2 ,rate= rate2))
9 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),

10 legend =c(" Monte Carlo "," transl . gamma "), cex =1)
11 plot(log(claims [order (claims)]) , log (1 -1:n/(n+1)) , xlim=c(min(log(claims)), max(log(claims))) ,
12 ylim=c(min(log (1-n/(n+1)) , log (1- pgamma ((claims [order (claims)]) -k, shape =shape2 ,
13 rate= rate2))) ,0) , type ="l", col =" red", main ="Log -log plot", xlab =" log(sampled values)",
14 ylab =" log (1- empirical distribution function)", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 ,
15 lwd =2)
16 lines (log(claims [order (claims)]) , log (1- pgamma ((claims [order (claims)]) -k, shape =shape2 ,
17 rate= rate2)))
18 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
19 legend =c(" Monte Carlo "," transl . gamma "), cex =1)

Listing 6: R code for Exercise 8.2 (a) (Translated log-normal approximation).
1 sigma . squared <- 0.00011444
2 mu2 <- 1/2*(log ((exp(sigma . squared) -1)^(-1)* lambdav * shape *(shape +1)/ rate ^2) - sigma . squared)
3 k2 <- lambdav * shape /rate -exp(mu2+ sigma . squared /2)
4 plot(claims [order (claims)], 1:n/(n+1) , xlim=c(min(claims),max(claims)), type ="l", col =" red",
5 main =" Empirical distribution function ", xlab =" Sampled values ",
6 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
7 lines (claims [order (claims)], pnorm (log ((claims [order (claims)]) - k2),mu2 ,sqrt(sigma . squared)))
8 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),
9 legend =c(" Monte Carlo "," transl . log - normal "), cex =1)

10 plot(log(claims [order (claims)]) , log (1 -1:n/(n+1)) , xlim=c(min(log(claims)), max(log(claims))) ,
11 ylim=c(min(log (1-n/(n+1)) , log (1- pnorm (log ((claims [order (claims)]) - k2),mu2 ,
12 sqrt(sigma . squared)))) ,0) , type ="l", col =" red", main ="Log -log plot",
13 xlab =" log(sampled values)", ylab =" log (1- empirical distribution function)", cex.lab =1.5 ,
14 cex.main =1.5 , cex.axis =1.5 , lwd =2)
15 lines (log(claims [order (claims)]) , log (1- pnorm (log ((claims [order (claims)]) - k2),mu2 ,
16 sqrt(sigma . squared))))
17 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
18 legend =c(" Monte Carlo "," transl . log - normal "), cex =1)

1030000 1050000 1070000

0e
+

00
2e

−
04

4e
−

04

Density of 0.95−quantiles of S

0.95−quantiles of S (Monte Carlo)

D
en

si
ty

n = 100
n = 1'000
n = 10'000

1040000 1080000 11200000.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

Density of 0.99−quantiles of S

0.99−quantiles of S (Monte Carlo)

D
en

si
ty

n = 100
n = 1'000
n = 10'000

Figure 4: Densities of the 100 quantiles q0.95 (left) and q0.99 (right) resulting from replicating the
n ∈ {100, 1’000, 10’000} Monte Carlo simulations 100 times.

Updated: November 4, 2019 6 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 7: R code for Exercise 8.2 (b) (Quantiles).
1 ### Monte Carlo simulations
2 k <- 100
3 n <- c (100 ,1000 ,10000)
4 set.seed (100)
5 claims .1 <- array (compound . poisson . distribution (n=rep (1,k*n[1]) , lambdav =1000 , shape =100 ,
6 rate =1/10) , dim=c(n[1] ,k))
7 set.seed (200)
8 claims .2 <- array (compound . poisson . distribution (n=rep (1,k*n[2]) , lambdav =1000 , shape =100 ,
9 rate =1/10) , dim=c(n[2] ,k))

10 set.seed (300)
11 claims .3 <- array (compound . poisson . distribution (n=rep (1,k*n[3]) , lambdav =1000 , shape =100 ,
12 rate =1/10) , dim=c(n[3] ,k))
13
14 ### Function calculating alpha - quantiles of S on the basis of Monte Carlo simulations of S
15 quantiles . monte . carlo <- function (claims , alpha){
16 n <- nrow(claims)
17 claims . sorted <- apply (claims , 2, sort)
18 quantiles . alpha <- claims . sorted [floor (alpha *n)+1 ,]
19 }
20
21 ### 0.95 - quantiles
22 range (quantiles .1 <- quantiles . monte . carlo (claims = claims .1, alpha =0.95))
23 range (quantiles .2 <- quantiles . monte . carlo (claims = claims .2, alpha =0.95))
24 range (quantiles .3 <- quantiles . monte . carlo (claims = claims .3, alpha =0.95))
25
26 ### Density
27 ymax <- max(density (quantiles .1)$y , density (quantiles .2)$y , density (quantiles .3) $y)
28 plot(density (quantiles .1) , col =" black ", ylim=c(0, ymax), main =" Density of 0.95 - quantiles of S",
29 xlab ="0.95 - quantiles of S (Monte Carlo)", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
30 lwd =2)
31 lines (density (quantiles .2) , col =" blue", lwd =2)
32 lines (density (quantiles .3) , col =" red", lwd =2)
33 legend (" topleft ", col=c(" black ", "blue", "red "), lwd =2, lty =1,
34 legend =c("n = 100" ,"n = 1 ’000" ,"n = 10 ’000"))
35
36 ### 0.99 - quantiles
37 range (quantiles .1 <- quantiles . monte . carlo (claims = claims .1, alpha =0.99))
38 range (quantiles .2 <- quantiles . monte . carlo (claims = claims .2, alpha =0.99))
39 range (quantiles .3 <- quantiles . monte . carlo (claims = claims .3, alpha =0.99))
40
41 ### Density
42 ymax <- max(density (quantiles .1)$y , density (quantiles .2)$y , density (quantiles .3) $y)
43 plot(density (quantiles .1) , col =" black ", ylim=c(0, ymax), main =" Density of 0.99 - quantiles of S",
44 xlab ="0.99 - quantiles of S (Monte Carlo)", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
45 lwd =2)
46 lines (density (quantiles .2) , col =" blue", lwd =2)
47 lines (density (quantiles .3) , col =" red", lwd =2)
48 legend (" topright ", col=c(" black ", "blue", "red "), lwd =2, lty =1,
49 legend =c("n = 100" ,"n = 1 ’000" ,"n = 10 ’000"))

q0.95 q0.99
Monte Carlo smallest largest smallest largest
n = 100 1’035’018 1’069’209 1’053’719 1’126’533
n = 1’000 1’047’186 1’057’829 1’066’770 1’084’902
n = 10’000 1’050’955 1’054’282 1’072’045 1’077’195
Approximations
normal 1’052’274 1’073’932
translated gamma 1’052’563 1’074’682
translated log-normal 1’052’562 1’074’684

Table 2: Smallest and largest observed values of the quantiles q0.95 and q0.99 among the 100
replications of the n ∈ {100, 1’000, 10’000} Monte Carlo simulations together with the values of
the quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation.

Updated: November 4, 2019 7 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

One can reach the same conclusions from Table 2, where we give the smallest and the
largest observed values of the quantiles q0.95 and q0.99 among the 100 replications of the
n ∈ {100, 1’000, 10’000} Monte Carlo simulations. Moreover, we also give the values of the
quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation, see Exercises 7.3 and 7.4. We see that the quantiles resulting
from the approximations are always between the smallest and the largest observed value
resulting from the Monte Carlo simulations. Of course, one can argue that we could choose
the number of simulations n large enough such that the results do not vary considerably
anymore. However, a too high number of simulations n will lead to an excessive computation
time. This is especially true if one considers heavy tailed distributions. Therefore, one is often
inclined to use other algorithms for compound distributions, such as the Panjer algorithm
and fast Fourier transforms.

Solution 8.3 Fast Fourier Transform

Assume that Ỹ follows the claim size distribution given on the exercise sheet. Let Y denote the
discretized version of Ỹ that takes values in N0. More precisely, we shift the probability masses of
Ỹ to the right and define

P[Y = 0] = 0 and P[Y = l] = P
[
Ỹ ≤ l

]
− P

[
Ỹ ≤ l − 1

]
,

for all l ∈ N. By a slight abuse of notation, we still write S for the compound Poisson distribution
with discrete claim size distribution Y . In particular, also S takes values in N0. We define

gl = P[Y = l] and fl = P[S = l],

for all l ∈ N0. We choose a threshold of n = 2’000’000, i.e. we determine the distribution function
of S up to n− 1. Note that n is chosen sufficiently high such that we approximately have

P [Y > n− 1] ≈ 0. (1)

We define A = {0, . . . , n− 1} and calculate the discrete Fourier transform (ĝz)z∈A of (gl)l∈A by

ĝz =
n−1∑
l=0

gl exp
{

2πizl
n

}
, (2)

for all z ∈ A. Due to (1), we approximately have

ĝz ≈ E
[
exp

{
2πizY

n

}]
= MY

(
2πi z

n

)
,

for all z ∈ A, where MY denotes the moment generating function of Y . Note that we use an
extended version of the moment generating function also allowing for complex numbers. If MS

denotes the moment generating function of S, again extended to complex numbers, then, according
to Proposition 2.11 of the lecture notes (version of March 20, 2019), we have

MS

(
2πi z

n

)
= exp

{
λv
[
MY

(
2πi z

n

)
− 1
]}
≈ exp {λv (ĝz − 1)} , (3)

for all z ∈ A. The left hand side of equation (3) can be written as

MS

(
2πi z

n

)
=
∞∑
l=0

fl exp
{

2πizl
n

}
=

n−1∑
l=0

(
fl +

∞∑
k=1

fl+kn

)
exp

{
2πizl

n

}
,

Updated: November 4, 2019 8 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

for all z ∈ A. Using the approximation

fl ≈ fl +
∞∑
k=1

fl+kn, (4)

for all l ∈ A, we compute the discrete Fourier transform (f̂z)z∈A of (fl)l∈A by

f̂z =
n−1∑
l=0

fl exp
{

2πizl
n

}
≈ MS

(
2πi z

n

)
≈ exp {λv (ĝz − 1)} ,

for all z ∈ A. Applying the inversion formula of the discrete Fourier transform, we finally calculate

fl = 1
n

n−1∑
z=0

f̂z exp
{
−2πizl

n

}
, (5)

for all l ∈ A. Note that due to the approximation in (4), instead of fl we actually calculate

fl +
∞∑
k=1

fl+kn > fl,

for all l ∈ A. This error is called wrap around error (or aliasing error), and n should be chosen
large enough in order to keep this wrap around error small.

900000 1000000 1100000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution function

Total claim amount

D
is

tr
ib

ut
io

n
fu

nc
tio

n

Monte Carlo
fast Fourier

13.70 13.80 13.90

−
12

−
8

−
6

−
4

−
2

0

Log−log plot

log(total claim amount)

lo
g(

1
−

 d
is

tr
ib

ut
io

n
fu

nc
tio

n)

Monte Carlo
fast Fourier

Figure 5: Comparison of the distribution function (left) and the log-log plot (right) of S resulting
from the fast Fourier transform algorithm to the Monte Carlo simulations.

In R, the calculations in equations (2) and (5) can be done using the command fft. The corre-
sponding R code is given in Listing 8. In Figure 5 we compare the distribution function (left)
and the log-log plot (right) of S resulting from the fast Fourier transform algorithm to the Monte
Carlo simulations of Exercise 8.2. We see that we get a very good fit. In particular, the threshold
n = 2’000’000 seems to be high enough. For the 0.95-quantile q0.95 and the 0.99-quantile q0.99 we
get

q0.95 = 1’053’089 and q0.99 = 1’075’215.
We see that we get values which are very close to the ones derived in Exercises 7.3 and 7.4, where
we used the normal, the translated gamma and the translated log-normal approximation.

Updated: November 4, 2019 9 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 8: R code for Exercise 8.3.
1 ### Fast Fourier transfom
2 n <- 2000000
3 lambdav <- 1000
4 claim .size <- c(0, pgamma (1:(n -1) , shape =100 , rate =1/10) - pgamma (0:(n -2) , shape =100 , rate =1/10))
5 claim .size.ft <- fft(claim .size)
6 total . claim . amount .ft <- exp(lambdav *(claim .size.ft -1))
7 total . claim . amount <- Re(fft(total . claim . amount .ft , inverse =TRUE)/ length (total . claim . amount .ft))
8
9 ### Monte Carlo simulations from Exercise 8.2

10 compound . poisson . distribution <- Vectorize (function (n, lambdav , shape , rate){
11 number .of. claims <- rpois (n=n, lambda = lambdav)
12 sum(rgamma (n = number .of.claims , shape =shape , rate=rate))
13 },"n")
14 m <- 100000
15 set.seed (100)
16 claim . amounts <- compound . poisson . distribution (n=rep (1,m), lambdav =1000 , shape =100 , rate =1/10)
17
18 ### Calculate values of the distribution function of S using the fast Fourier transfrom
19 probabilities <- cumsum (total . claim . amount)[floor (claim . amounts [order (claim . amounts)])+1]
20
21 ### Check the fast Fourier transform result
22 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
23 plot(claim . amounts [order (claim . amounts)], 1:m/(m+1) ,
24 xlim=c(min(claim . amounts),max(claim . amounts)), type ="l", col =" red",
25 main =" Distribution function ", xlab =" Total claim amount ", ylab =" Distribution function ",
26 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
27 lines (claim . amounts [order (claim . amounts)], probabilities , lwd =1)
28 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "), legend =c(" Monte Carlo "," fast Fourier

"), cex =1)
29 plot(log(claim . amounts [order (claim . amounts)]) , log (1 -1:m/(m+1)) ,
30 xlim=c(min(log(claim . amounts)), max(log(claim . amounts))) ,
31 ylim=c(min(log (1-m/(m+1)) , log (1- probabilities)) ,0) , type ="l", col =" red",
32 main ="Log -log plot", xlab =" log(total claim amount)", ylab =" log (1 - distribution function)",
33 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
34 lines (log(claim . amounts [order (claim . amounts)]) , log (1- probabilities), col =" black ", lwd =1)
35 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "), legend =c(" Monte Carlo "," fast Fourier

"), cex =1)
36
37 ### Determine the 0.95 - and the 0.99 - quantiles
38 which (cumsum (total . claim . amount) > 0.95)[1] -1
39 which (cumsum (total . claim . amount) > 0.99)[1] -1

Solution 8.4 Panjer Distribution

If we write pk = P[N = k], for all k ∈ N, then, by definition of the Panjer distribution, we have

pk = pk−1

(
a+ b

k

)
,

for all k ∈ N. We can use this recursion to calculate E[N] and Var(N). Note that the range of N is
N, if a ≥ 0, and {0, 1, . . . , n} for some n ∈ N≥1, if a < 0.
First, we consider the case where a < 0, i.e. where the range of N is {0, 1, . . . , n}. According to the
proof of Lemma 4.7 of the lecture notes (version of March 20, 2019), we have

n = −a+ b

a
. (6)

For the expectation of N we get

E[N] =
n∑
k=0

k pk =
n∑
k=1

k pk =
n∑
k=1

k pk−1

(
a+ b

k

)
= a

n∑
k=1

k pk−1 + b

n∑
k=1

pk−1

= a

n−1∑
k=0

(k + 1) pk + b

n−1∑
k=0

pk = a

n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk = a (E[N]− npn) + (a+ b)(1− pn)

= aE[N] + a+ b+ pn(−an− a− b).

Updated: November 4, 2019 10 / 11

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Using (6), we get
−an− a− b = a

a+ b

a
− a− b = 0. (7)

Hence, the above expression for E[N] simplifies to

E[N] = aE[N] + a+ b,

from which we can conclude that
E[N] = a+ b

1− a.

In order to get the variance of N , we first calculate the second moment of N :

E[N2] =
n∑
k=0

k2 pk =
n∑
k=1

k2 pk =
n∑
k=1

k2 pk−1

(
a+ b

k

)
= a

n∑
k=1

k2 pk−1 + b

n∑
k=1

k pk−1

= a

n−1∑
k=0

(k + 1)2 pk + b

n−1∑
k=0

(k + 1) pk = a

n−1∑
k=0

k2 pk + (2a+ b)
n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N2]− n2pn) + (2a+ b)(E[N]− npn) + (a+ b)(1− pn)
= aE[N2] + (2a+ b)E[N] + a+ b+ pn[−an2 − (2a+ b)n− a− b].

Using (6), we get

−an2 − (2a+ b)n− a− b = −a
(
a+ b

a

)2
+ (2a+ b)a+ b

a
− a− b

= −a
2 + 2ab+ b2

a
+ 2a2 + 3ab+ b2

a
− a2 + ab

a
= 0.

(8)

Hence, the above expression for E[N2] simplifies to

E[N2] = aE[N2] + (2a+ b)E[N] + a+ b,

from which we get

E[N2] = (2a+ b)E[N] + a+ b

1− a = (2a+ b) (a+ b) + (a+ b)(1− a)
(1− a)2

= 2a2 + 3ab+ b2 + a− a2 + b− ab
(1− a)2 = (a+ b)2 + a+ b

(1− a)2 .

Finally, the variance of N then is

Var(N) = E[N2]− E[N]2 = (a+ b)2 + a+ b

(1− a)2 − (a+ b)2

(1− a)2 = a+ b

(1− a)2 .

In the case where a ≥ 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to ∞ instead
of stopping at n. As a consequence, the calculations in (7) and in (8) aren’t necessary anymore.
The formulas for E[N] and Var(N), however, remain the same.
The ratio of Var(N) to E[N] is given by

Var(N)
E[N] = a+ b

(1− a)2
1− a
a+ b

= 1
1− a.

Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N].

Updated: November 4, 2019 11 / 11

