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1 The objects

1.1 The general framework

We consider a centered Gaussian field indexed by the plane: (f(x))x∈R2 . We assume
that its law is invariant under translation, i.e. that there exists a function κ : R2 → R
such that

E[f(x)f(y)] = κ(x− y).

The function κ is called the covariance function. We assume that f is a.s. C∞ (which
is equivalent to the fact that κ is C∞)1. We also assume that the law of f is invariant
under rotation (i.e. that κ is radial) and that we are not in the degenerate case f = 0.

Given a level ` ∈ R, we are interested in the geometric properties of the level set
{f = `}. We can prove that, under the above hypothesis, for every ` a.s. there is no
x ∈ R2 such that f(x) = ` and 5xf = 0 (see Remark 1.1). Therefore, a.s. {f = `} is a
union of smooth loops (and maybe of one or several unbounded smooth paths). When
` = 0, a connected component of {f = `} is called a nodal line.

We will be interested in three main properties:

1More precisely, this implies that κ is C∞ and if κ is C∞ then there exists a modification of f which
is C∞, see for instance Appendix A in [NS16]
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1. The length. Can we estimate the expectation and the variance of length({f =
`} ∩ [−R,R]2)? Do we have a LLN and a CLT? Remark: this is a local quantity:
in order to compute the length of {f = `} in a domain, we can divide the domain
in subdomains, compute the length in each subdomain, and then sum.

2. The number of loops. What about the number of connected components of
{f = `} ∩ [−R,R]2) (expectation, variance, LLN, CLT)? Remark: this is not a
local quantity. However, if we know this quantity in some subdomains, then it
gives some information on the quantity in the whole domain (for instance we have
a subadditivity property).

3. Percolation properties. Is there an unbounded level line? What about the
event that there is a crossing of [−R,R]2 from left to right included in {f = `}?
Remark: this is not at all a local property.

Remark 1.1. By using that a.s. convergence implies L2 convergence for Gaussian
variables, we obtain that for any α, β ∈ N2, E[∂αf(x)∂βf(y)] = (−1)|β|∂α∂βκ(x − y).
In particular, for every x, f(x) is independent of 5xf . By using the invariance under
rotation, one also obtains that the coordinates of 5xf are independent. As a result,
(f(x),5xf)x is a three dimensional non-degenerate smooth Gaussian field indexed by a
space of dimension 2 < 3. Now, the fact that for every ` ∈ R a.s. there exist no point x
at which this vector equals (`, 0, 0) comes from general theorems on random fields, see
for instance Lemma 11.2.10 of [AT07].

In these notes, we will only consider fields such that κ goes to 0 at infinity, so that
we can hope to have some - possibly very weak - spatial “quasi-independence” property.

1.2 Examples of Gaussian fields

A. The Bargmann-Fock (B-F) field. The B-F field is defined by the covariance
function κ(x) = e−|x|

2/2 and can be realized as the following real-analytic function:

f(x) = f(x1, x2) = e−|x|
2/2

∑
i,j∈N

ai,j
xi1x

j
2√

i!j!
, (1)

where the ai,j are i.i.d. N (0, 1) (the convergence of the series is a.s. uniform on any
compact).

The B-F field can also be seen as the local limit of a model of random homogeneous
polynomials on the sphere: the Kostlan ensemble, which is defined as follows. Let
d ∈ N (that we will let go to +∞) and define a random homogeneous polynomial of
degree d:

∀(x0, x1, x2) ∈ S2, Pd(x0, x1, x2) :=
∑

i,j,k∈N, i0+i1+i2=d

√
d!

i0!i1!i2!
xi00 x

i1
1 x

i2
2 ,
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where the ai0,i1,i2 are i.i.d. N (0, 1). The law of Pd (on the space Rhomd [x0, x1, x2]) is
invariant under composition by any orthogonal matrix. This is not the only such law
(even up to multiplication by a constant). However, this is the only law on the space
Chomd [x0, x1, x2] which is invariant under composition by any unitary matrix. If we zoom
at scale 1/

√
d then the model converges to the B-F field.

Because of this property, the B-F field is often called the algebraic model.

Figure 1: The Kostlan ensemble converges to the B-F field (simulations Vincent Beffara
and Alejandro Rivera). In blue: the set where the function is positive; in green: the set
where it is negative.

B. The random planar wave (RPW). The RPW model is defined by the covariance
function κ(x) = J0(|x|). We recall that that the mth Bessel function Jm is defined by

Jm(r) = 1
π

∫ π
0 cos(mu − r sin(u))du =

√
2
πr cos(r − mπ/2 − π/4) + Or→+∞(1/r). The

RPW can be realized as the following sum:

f(x) = f(reiθ) =
∑
m∈N

(am cos(mθ) + bm sin(mθ))Jm(r),

where the am are i.i.d. N (0, 1). One can prove2 that a.s. 4f = −f : the RPW is a
random eigenfunction of the Laplacian.

The RPW can also be seen as the local limit of a model of random spherical harmonics
on the sphere. The Laplacian on the sphere is defined as follows: if g : S2 → R is C2,
we let 4S2g = (4R3 g̃)|S2 where g̃(x) := g(x/|x|). Then, the eigenvalues of −4S2 are the
numbers k(k+1) and are of multiplicity 2k+1 i.e. the L2 space of functions g : S2 → R
such that − 4S2 g = k(k + 1)g is a Hilbert space of dimension 2k + 1. We let hk be

2By using that 4 = ∂r,r + 1/r∂r + 1/r2∂θ,θ and that r2J ′′m(r) + rJ ′m(r) + (r2 −m2)Jm(r) = 0.
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a standard Gaussian variable on this space. Then, if we zoom at scale 1/k, the model
converges to the RPW.

Because of this property, the RPW field is often called the Riemannian model.

Figure 2: The RPW (simulation by Vincent Beffara).

Remark 1.2. The B-F field and the RPW are very rigid (the B-F is a.s. real-analytic
and the RPW is a.s. an eigenfunction of the Laplacian). For any open set U ⊂ R2,
(f(x))x∈R2 is measurable with respect (f(x))x∈U . In particular, we have no spatial
Markov property here!

C. Fields with polynomial decay of correlation. Below we will also consider fields
gα for every α > 0 such that 0 < κ(x) = κα(x) �∞ |x − y|−α (with sometimes further
conditions on κα).

2 Some results

In this section, we state some results for Gaussian fields with the hypothese of Subsection
1.1. We still use the abbreviations/notations B-F, RPW and gα.

We write “w.s.w.h.” for “with some weak hypotheses” when we are not precise on
the exact assumptions we need on the covariance and that these assumptions are very
weak - e.g. weak non-degeneracy assumptions or weak assumptions about the speed of
decay of the derivatives of κ.

2.1 The length

Let LR(`) = length({f = `} ∩ [−R,R]2). First note that for every ` there exists c > 0
such that E[LR(`)] = cR2. Indeed, by dividing the squares in 2 × 2 squares we have
E[LR(`)] = R2E[L1(`)] (we leave as an exercice that E[L1(`)] is finite and positive). We
have the following concentration properties.
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Theorem 2.1. • Consider the B-F field or a field gα, α > 2 (w.s.w.h.)3. Then, for
every ` there exists c > 0 such that Var(LR(`)) ∼ cR2 [KL01] i.e. LR(`) behaves
like a sum of R2 i.i.d. variables, which is what one could except if one sees the
hypothesis α > 2 as an hypothesis that implies some independence.

• For the random spherical harmonics, for every ` there exists c > 0 such that
E[kLk(`)] ∼ ck2 where Lk(`) is the length of {hk = `} [Bér85]. (Note that kLk(`)
is the analogue of LR(`) with k ' R.) Moreover, if ` 6= 0 there exists c′ > 0 such
that Var(kLk(`)) ∼ c′k3 [Ros16], and there exists c′′ > 0 such that Var(kLk(0)) ∼
c′′k2 log(k) [Wig10].

• For the RPW, if ` 6= 0 it is expected - and partial results are known [Vid18] - that
there exists c > 0 such that Var(LR(`)) ∼ cR3, and it is proven that there exists
c′ > 0 such that Var(LR(0)) ∼ c′R2 log(R) [NPR19].

The above surprising phenomenon at ` = 0 for the RPW and the spherical harmonics
is called Berry’s cancellation.

Note that the above implies a LLN: LR(`)/R2 converges a.s. and in L2 to some
positive constant. Actually, the LLN is also a direct consequence of ergodic theorems
since it is known that, if κ goes to 0 at infinity, then the field is ergodic (see Theorem
6.5.4 of [Adl10]).

A CLT is also known: LR(`)−E[LR(`)]√
Var(LR(`))

converges in distribution to N (0, 1). More

precisely, the CLT is proved (i) for the B-F and for gα, α > 2 (w.s.w.h., [KL01]), (ii) for
the random spherical harmonics [Ros16, MRW17], (iii) in the case ` = 0 for the RPW
[NPR19]. The CLT is not known for the RPW at ` 6= 0 (as explained above, only partial
results for the variance are known in this case).

The “Berry’s cancellation” phenomenon at ` = 0 actually implies that, for the RPW,
LR(0) can be approximated by a random variable that belongs to a specific L2 space
(the so-called 4th Wiener chaos space). This makes the study easier (in particular, in
this space convergence in distribution to the Gaussian is implied by the convergence of
the fourth moment - this is the so-called “Theorem four”, see [NP05]). We will not say
more about this here and we refer for instance to the survey [Ros18].

2.2 The number of connected components

Let NR(`) denote the number of connected components of {f = `}∩ [−R,R]2. Contrary
to the length which is a “local” quantity, the LLN is not a direct consequence of ergodic
theorems: in the case of the number of connected components, one has to deal with
“boundary terms”. The following LLN is proved:

Theorem 2.2. [NS16] W.s.w.h., we have a LLN: for every ` there exists c > 0 such
that NR(`)/R2 converges a.s. and in L1 to c.

3Here the positivity of the covariance of gα is not important: what is crucial is just that the covariance
is L1.
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No CLT is known. What about estimates on the variance? It is conjectured that the
variance behaves similarly as in the case of the length. More precisely, it is conjectured
that, for any `, the variance is asymptotic to R2 for the B-F field and for gα, α > 2
(w.s.w.h.).4 Also, it is conjectured that the variance of NR(`) for the RPW is asymptotic
to R3 if ` 6= 0 but is much less than R3 if ` = 0. We have the following partial results.

Theorem 2.3. [BMM19]

• For the B-F field, if |`| ≥ 1.37 then Var(NR(`)) ≥ c`R
2. This also holds for |`|

sufficiently large for gα, α > 2 with some strong hypotheses on κα.

• For the RPW, if |`| ≥ 1 then Var(NR(`)) ≥ c`R3.

Moreover (w.s.w.h.) the following is a corollary of the work [EF16] on critical
points of Gaussian fields: Var(NR(`)) ≤ CR4. Let us also point out that a proof that
Var(NR(0)) ≥ cRa for some a > 0 for the RPW has been announced [NS].

2.3 Percolation

The first question we ask in this section is “is there an unbounded component in {f =
`}”? It is known that, if κ ≥ 0, then a.s. for every ` ∈ R there is no such unbounded
component [Ale96]. Note that (since the level lines are smooth), the existence of an
unbounded connected component in {f = 0} is equivalent to the equivalent property for
{f > 0} (and also for {f < 0}). In particular, the absence of an unbounded component
in {f = 0} implies the absence of an unbounded component in {f = `} for every `.

For the RPW (for which we do not have κ ≥ 0!), the fact that {f = 0} has no
unbounded component is still a conjecture. It is actually expected that under very weak
assumptions (and maybe even for any field that satisfies the general hypotheses of these
notes), {f = 0} has no unbounded component.

The following is a more quantitative version with stronger hypotheses. We let
Arm`(R) denote the event that there is a loop at level ` that crosses both the circle
of radius 1 and the circle of radius R. Note that P [ArmR(`)] converges to the event that
there is an unbounded component in {f = `} that crosses the circle of radius 1.

Theorem 2.4. • [BG17, BM18, RV17b, MV18] Consider the B-F field, the field gα,
α > 4 (w.s.w.a.), or the field gα, α ∈]2, 4] with some strong hypotheses on κα.
Then, (i) there exist C, c > 0 such that P[Arm0(R)] ≤ CR−c and (ii) for any
a > 0, the event that there is a crossing from left to right of [−aR, aR] × [−R,R]
by a nodal line has probability bounded away from 0 and 1 uniformly in R.

• [RV17a, MV18, Riv19] For the B-F and for gα, α > 2 with some strong hypotheses
on κα, for every ` 6= 0 there exist C, c > 0 such that P[Arm`(R)] ≤ Ce−cR.

From a percolation point of view, this might seem surprising to study the level lines,
which are the interfaces between the excursion sets {f > `} and {f < `}, rather than
these excursion sets themselves. Let us study these excursion sets.

4Here the positivity of κα is not important, what is crucial is that |κα(x)| ≤ C|x|−α.
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For the fields for which the exponential decay of Theorem 2.4 is proved, it is also
proved that the percolation critical point is 0 in the sense that there is a.s. an unbounded
component in {f > `} if ` < 0 but this is a.s. not the case if ` ≥ 0 (as explained above,
the case ` ≥ 0 comes from [Ale96]). A finite size version of this property is that the
probability that there is a crossing from left to right of [−aR, aR] × [−R,R] included
in {f > `} goes to 0 (exponentially fast) if ` > 0 and goes to 1 (exponentially fast) if
` < 0. In the previous subsections, we stated concentration results for the length and the
number of connected component. Let us keep this point of view: the finite size version
of the phase transition is a consequence of the following concentration result.

Theorem 2.5. [RV17a, MV18, Riv19]5 Fix some a > 0. Let TR denote the threshold
function i.e. the supremum of all levels ` such that there is a crossing from left to right
of [−aR, aR] × [−R,R] included in {f > `}. Then, for the B-F field and for gα, α > 2
with some strong hypotheses on κα, Var(TR) goes to 0 as R goes to +∞ polynomially
fast.

We will see later that w.s.w.h. on the field, we have that Var(TR) is bounded uni-
formly in R.

Note that there exists a left-right crossing in {f ≥ TR} and that there is a top-bottom
crossing in {f ≤ TR}. W.s.w.h., a.s. for every level ` there is at most one critical point
at level `. That implies that there exists a.s. a unique point SR (the “saddle point”)
such that: (i) f(SR) = TR, (ii) there exists a left-right crossing γ ⊂ {f ≥ TR} such that
SR ∈ γ and f > TR on γ\{SR} and (iii) there exists a top-bottom crossing γ ⊂ {f ≤ TR}
such that SR ∈ γ and f < TR on γ \ {SR}. We will see that the fact that Var(TR) goes
to 0 is equivalent to some “spatial chaotic behavior” of the saddle point.

SR

Figure 3: The saddle point of the crossing event. In full line: f > Tn; in dashed line:
f < Tn; f(Sn) = Tn.

5The concentration point of view comes from [Riv19].
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One of the main questions in the study of percolation of Gaussian fields is: do the
models behave like Bernoulli percolation? It is actually conjectured that for the B-F
field, the RPW and for gα, α > 3/2, the model has the same scaling limit as Bernoulli
percolation (i.e. the probabilities of crossings at level 0 are given by the Cardy formula
and the scaling limit of the interface is the SLE6 process, ...).6 In particular, it is believed
that for these processes we have Var(TR) = R−3/2+o(1). As we will see later, this property
is not true for gα if α ∈]0, 3/2[ (here the positivity of the covariance of gα is crucial).

It might not be very surprising that we expect that the model has the same scaling
limit as Bernoulli percolation when the covariance decays fast since this sems to be equiv-
alent to some spatial independence property (we will say more about this below). What
might be more surprinsing is that it is believed that the percolation model constructed
by using the RPW - whose covariance decays like 1/

√
|x− y| - behaves like Bernoulli

percolation and that this is not the case for g1/2. The idea is that the oscillations of the
covariance of the RPW should help to have some spatial mixing.
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