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1 The objects

1.1 The general framework

We consider a centered Gaussian field indexed by the plane: (f(x))x∈R2 . We assume
that its law is invariant under translations, i.e. that there exists a function κ : R2 → R
such that

E[f(x)f(y)] = κ(x− y).
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The function κ is called the covariance function. We assume that f is a.s. C∞ (which
is equivalent to the fact that κ is C∞)1. We also assume that the law of f is invariant
under rotation (i.e. that κ is radial) and that we are not in the degenerate case f = 0.

Given a level ` ∈ R, we are interested in the geometric properties of the level set
{f = `}. We can prove that, under the above hypotheses, for every ` a.s. there is no
x ∈ R2 such that f(x) = ` and 5xf = 0 (see Remark 1.1). Therefore, a.s. {f = `} is a
union of smooth loops (and maybe of one or several unbounded smooth paths). When
` = 0, a connected component of {f = `} is called a nodal line.

We will be interested in three following quantities/properties:

1. The length. Can we estimate the expectation and the variance of the length of
{f = `} ∩ [−R,R]2? Do we have a LLN and a CLT? Remark: this is a local
quantity: in order to compute the length of {f = `} in a domain, we can divide
the domain in subdomains, compute the length in each subdomain, and then sum.

2. The number of loops. What about the number of connected components of
{f = `} ∩ [−R,R]2 (expectation, variance, LLN, CLT)? Remark: this is not a
local quantity. However, if we know this quantity in some subdomains, then it
gives some information on the quantity in the whole domain (for instance we have
a subadditivity property).

3. Percolation properties. Is there an unbounded level line? What about the
event that there is a crossing of [−R,R]2 from left to right included in {f = `}?
Remark: this is not at all a local property.

Remark 1.1. By using that a.s. convergence implies L2 convergence for Gaussian
variables, we obtain that for any α, β ∈ N2, E[∂αf(x)∂βf(y)] = (−1)|β|∂α∂βκ(x − y).
In particular, for every x, f(x) is independent of 5xf . By using the invariance under
rotation, one also obtains that the coordinates of 5xf are independent. As a result,
(f(x),5xf)x is a three dimensional non-degenerate smooth Gaussian field indexed by a
space of dimension 2 < 3. Now, the fact that for every ` ∈ R a.s. there exist no point x
at which this vector equals (`, 0, 0) comes from general theorems on random fields, see
for instance Lemma 11.2.10 of [AT07].

In these notes, we also assume that κ goes to 0 at infinity, so that we can hope to
have some - possibly very weak - spatial “quasi-independence” property.

1.2 Examples of Gaussian fields

A. The Bargmann-Fock (B-F) field. The B-F field is defined by the covariance
function κ(x) = e−|x|

2/2 and can be realized as the following real-analytic function:

f(x) = f(x1, x2) = e−|x|
2/2

∑
i,j∈N

ai,j
xi1x

j
2√

i!j!
, (1)

1More precisely, this implies that κ is C∞ and if κ is C∞ then there exists a modification of f which
is C∞, see for instance Appendix A in [NS16].
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where the ai,j are i.i.d. N (0, 1) (the convergence of the series is a.s. uniform on any
compact).

The B-F field can also be seen as the local limit of a model of random homogeneous
polynomials on the sphere: the Kostlan ensemble, which is defined as follows. Let
d ∈ N (that we will let go to +∞) and define a random homogeneous polynomial of
degree d:

∀(x0, x1, x2) ∈ S2, Pd(x0, x1, x2) :=
∑

i,j,k∈N, i0+i1+i2=d

√
d!

i0!i1!i2!
xi00 x

i1
1 x

i2
2 ,

where the ai0,i1,i2 are i.i.d. N (0, 1). The law of Pd (on the space Rhomd [x0, x1, x2]) is
invariant under composition by any orthogonal matrix. This is not the only such law
(even up to multiplication by a constant). However, this is the only law on the space
Chomd [x0, x1, x2] which is invariant under composition by any unitary matrix. If we zoom
at scale 1/

√
d then the model converges to the B-F field:

Pd

(√
1− x21 + x22

d
,
x1√
d
,
x2√
d

)

=
∑

i1,i2∈N, i1+i2≤d
ad−(i1+i2),i1,i2

√
d!

(d− (i1 + i2))!i1!i2!

(√
1− x21 + x22

d

)d−(i1+i2)
xi11 x

i2
2√

d
i1+i2

=
∑

i1,i2∈N, i1+i2≤d

(√
1− x21 + x22

d

)d−(i1+i2)
ad−(i1+i2),i1,i2

xi11 x
i2
2√

i1!i2!

√
d!

(d− (i1 + i2))!di1+i2
.

(For any fixed i1, i2,

(√
1− x21+x

2
2

d

)d−(i1+i2)
converges to e−|x|

2/2 and
√

d!
(d−i1+i2)!di1+i2

converges to 1, and one can deduce2 from this that the above converges a.s. on every
compact to an entire series of the form (1).)

Because of this property, the B-F field is often called the algebraic model.

B. The random planar wave (RPW). The RPW model is defined by the covariance
function κ(x) = J0(|x|). We recall that that the mth Bessel function Jm is defined by

Jm(r) = 1
π

∫ π
0 cos(mu − r sin(u))du =

√
2
πr cos(r − mπ/2 − π/4) + Or→+∞(1/r). The

RPW can be realized as the following sum:

f(x) = f(reiθ) =
∑
m∈N

(am cos(mθ) + bm sin(mθ))Jm(r),

where the am are i.i.d. N (0, 1). One can prove3 that a.s. 4f = −f : the RPW is a
random eigenfunction of the Laplacian.

2By being a little quantitative and by choosing that ad−(i1+i2),i1,i2 does not depend on d ≥ i1 + i2.
3By using that 4 = ∂r,r + 1/r∂r + 1/r2∂θ,θ and that r2J ′′m(r) + rJ ′m(r) + (r2 −m2)Jm(r) = 0.
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Figure 1: The Kostlan ensemble converges to the B-F field (simulations Vincent Beffara
and Alejandro Rivera). In blue: the set where the function is positive; in green: the set
where it is negative.

The RPW can also be seen as the local limit of a model of random spherical harmonics
on the sphere. The Laplacian on the sphere is defined as follows: if g : S2 → R is C2,
we let 4S2g = (4R3 g̃)|S2 where g̃(x) := g(x/|x|). Then, the eigenvalues of −4S2 are the
numbers k(k+1) and are of multiplicity 2k+1 i.e. the L2 space of functions g : S2 → R
such that −4S2 g = k(k + 1)g is a Hilbert space Hk of dimension 2k + 1. We let hk be
a standard Gaussian variable on Hk times (2k + 1)−1/2. These random eigenfunctions
of 4S2 are called random spherical harmonics. Then, if we zoom at scale 1/k, the
model converges to the RPW.

Because of this property, the RPW field is often called the Riemannian model.

Figure 2: The RPW (simulation by Vincent Beffara).
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Remark 1.2. The B-F field and the RPW are very rigid (the B-F is a.s. real-analytic
and the RPW is a.s. an eigenfunction of the Laplacian). For any open set U ⊂ R2,
(f(x))x∈R2 is measurable with respect (f(x))x∈U . In particular, we have no spatial
Markov property here!

C. Fields with polynomial decay of correlation. Below we will also consider fields
gα for every α > 0 such that 0 < κ(x) = κα(x) �∞ |x − y|−α (with sometimes further
conditions on κα).

2 Some results

In this section, we state some results for Gaussian fields with the hypothese of Sub-
section 1.1. We try to focus essentially on concentration results. We still use the
abbreviations/notations B-F, RPW and gα.

We write “w.s.w.h.” for “with some weak hypotheses” when we are not precise on
the exact assumptions we need on the covariance and that these assumptions are very
weak - e.g. weak non-degeneracy assumptions or weak assumptions about the speed of
decay of the derivatives of κ.

2.1 The length

Let LR(`) = length({f = `} ∩ [−R,R]2). First note that for every ` there exists c > 0
such that E[LR(`)] = cR2. Indeed, by dividing the squares in 2 × 2 squares we have
E[LR(`)] = R2E[L1(`)] (we leave as an exercice that E[L1(`)] is finite and positive). We
have the following concentration properties.

Theorem 2.1. • Consider the B-F field or a field gα, α > 2 (w.s.w.h.)4. Then,
for every ` there exists c > 0 such that Var(LR(`)) ∼ cR2 [KL01] i.e. LR(`)
behaves like a sum of R2 i.i.d. variables, which is what one could except if one
sees the hypothesis α > 2 as an hypothesis that implies some spatial independence
properties.

• The analogous result holds for the Kostlan ensemble: For every ` there exist c, c′ >
0 such that E[

√
dLd(`)] ∼ cd [Kos93] and Var(

√
dLd(`) ∼ c′d [Let19] where Ld(`) is

the length of {Pd = `}. (Note that
√
dLd(`) is the analogue of LR(`) with d ' R2.)

• For the RPW, if ` 6= 0 it is expected - and partial results are known [Vid18] - that
there exists c > 0 such that Var(LR(`)) ∼ cR3, and it is proven that there exists
c′ > 0 such that Var(LR(0)) ∼ c′R2 log(R) [NPR19].

• The analogous result holds for random spherical harmonics: For every ` there exists
c > 0 such that E[kLk(`)] ∼ ck2 where Lk(`) is the length of {hk = `} [Bér85].

4Here the positivity of the covariance of gα is not important: what is crucial is just that the covariance
is L1.
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(Note that kLk(`) is the analogue of LR(`) with k ' R.) Moreover, if ` 6= 0 there
exists c′ > 0 such that Var(kLk(`)) ∼ c′k3 [Ros16], and there exists c′′ > 0 such
that Var(kLk(0)) ∼ c′′k2 log(k) [Wig10].

The above surprising phenomenon at ` = 0 for the RPW and the spherical harmonics
is called Berry’s cancellation [Ber02].

Note that the above implies a LLN: LR(`)/R2 converges a.s. and in L2 to some
positive constant. Actually, the LLN is also a direct consequence of ergodic theorems
since it is known that, if κ goes to 0 at infinity, then the field is ergodic (see Theorem
6.5.4 of [Adl10]).

A CLT is also known: LR(`)−E[LR(`)]√
Var(LR(`))

converges in distribution to N (0, 1) [KL01,

Ros16, MRW17, NPR19] (let us note that the CLT is not known for the RPW at ` 6= 0).
The “Berry’s cancellation” phenomenon at ` = 0 actually implies that, for the RPW,

LR(0) can be approximated by a random variable that belongs to a specific L2 space
(the so-called 4th Wiener chaos space). This makes the study easier (in particular, in
this space convergence in distribution to the Gaussian is implied by the convergence of
the fourth moment - this is the so-called “Theorem four”, see [NP05]). We will not say
more about this here and we refer for instance to the survey [Ros18].

Analogous results are also proven for random harmonics on the torus. In this case,
there is no universal behavior: the behavior of the variance highly depends on the subse-
quence of eigenvalues [KW17, KW17, MPRW16]. Results about the length restricted to
some subdomains and about expectation/variance/CLT for other local quantities (such
as the number of critical points or the Euler characteristic) are proven in [EF16, EL16,
CMW16, CW17, CM18, Tod18, PV19]. See [Zel09, Let16, Let19, LP17, AP18]5 for re-
sults about the expectation and the variance of local quantities in much more general
settings (and in larger dimensions).

Some toy models. Let us study these questions on discrete percolation models. Let
us first consider a rhombus made of n2 regular hexagons and let Tn denote the subset of
the regular triangular lattice that correspond to this rhombus (i.e. we put a vertex at
the center of each hexagon). Let (Xv)v∈Tn be i.i.d. N (0, 1), let ` ∈ R, and let us color
the hexagon in black (resp. white) if Xv > ` (resp. Xv < `). The level set is defined as
the interface between black and white. As a result, the length of the level set is

Ln(`) =
∑

{v,w} edge

1(Xv−`)(Xw−`)<0.

Then E[Ln(`)] ∼ c`n2 for some c` > 0 and

Var(Ln(`)) =
∑

{v,w},{v′,w′}

Cov(1(Xv−`)(Xw−`)<0, 1(Xv′−`)(Xw′−`)<0).

5[AP18] contains a self-contained introduction to Malliavin calculus which is an important tools in
this area.
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The covariance term above is 0 if the edges do not share a vertex, is some strictly positive
constant if {v, w} = {v′, w′}, and is some non-negative constant (positive if and only if
` 6= 0) if the edges share exactly one vertex. This implies that Var(Ln(`)) ∼ c′`n

2 for
some c′` > 0.

Let us study a second toy model which should mimic some behaviours of the RPW.
We still consider the n×n rhombus and some ` ∈ R. We also consider X1, · · · , Xn i.i.d.
N (0, 1) and we color in black (resp. in white) the ith column of the rombus if Xi > `
(resp. Xi < `). This time we have

Ln(`) = n

n−1∑
i=1

1(Xi−`)(Xi+1−`)<0.

We have the same behavior as the RPW at non-zero levels: E[Ln(`)] ∼ c`n
2 and

Var(Ln(`)) ∼ c′`n3.

We also have a CLT for these two toy models. At ` = 0, it suffices to apply the
classical CLT since we deal with sums of i.i.d. (bounded) random variables. In the
case ` 6= 0, the variables are only 2-dependent. One can apply a CLT for m-dependent
variables (for this theorem, a (2 + δ)-moment is needed rather than just a 2nd moment,
but the variables that we consider are even bounded).

2.2 The number of connected components

Let NR(`) denote the number of connected components of {f = `}∩ [−R,R]2. Contrary
to the length which is a “local” quantity, the LLN is not a direct consequence of ergodic
theorems: in the case of the number of connected components, one has to deal with
“boundary terms”. The following LLN is proved:

Theorem 2.2. [NS16] W.s.w.h., we have a LLN: for every ` there exists c > 0 such
that NR(`)/R2 converges a.s. and in L1 to c.

Asymptotic estimates on the expectation of NR(`) in a much more general setting
(and in larger dimensions) are proven in [GW12, GW14b, GW14c, GW14a]. No CLT
is known. Some concentration results are known but there are only partial results. We
start with a large deviations result.

Theorem 2.3. [NS09] For the spherical harmonics hk, there exists c > 0 such that, for
every ε > 0 there exist C ′, c′ > 0 such that

P
[∣∣∣∣Nk(0)

k2
− c
∣∣∣∣ ≥ ε] ≤ C ′e−c′k,

where Nk(0) is the number of connected components of {hk = 0}.
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For the B-F field and for the fields gα, α > 4 (w.s.w.h.),6 concentration results from

below (i.e. upper bounds on P
[
NR(`)
R2 − c ≤ ε

]
) are proved in [RV17b].

What about estimates on the variance? It is conjectured that the variance behaves
similarly as in the case of the length. More precisely, it is conjectured that, for any `,
the variance is asymptotic to R2 for the B-F field and for gα, α > 2 (w.s.w.h.).7 Also, it
is conjectured that the variance of NR(`) for the RPW is asymptotic to R3 if ` 6= 0 but
is much less than R3 if ` = 0. We have the following partial results.

Theorem 2.4. [BMM19]

• For the B-F field, if |`| ≥ 1.37 then Var(NR(`)) ≥ c`R
2. This also holds for |`|

sufficiently large for gα, α > 2 with some strong hypotheses on κα.

• For the RPW, if |`| ≥ 1 then Var(NR(`)) ≥ c`R3.

Moreover (w.s.w.h.) the following is a corollary of the work [EF16] on critical
points of Gaussian fields: Var(NR(`)) ≤ CR4. Let us also point out that a proof that
Var(NR(0)) ≥ cRa for some a > 0 for the RPW has been announced [NS].

2.3 Percolation

The first question we ask in this subsection is “is there an unbounded component in
{f = `}”? It is known that, if κ ≥ 0, then a.s. for every ` ∈ R there is no such unbounded
component [Ale96]. Note that (since the level lines are smooth), the existence of an
unbounded connected component in {f = 0} is equivalent to the equivalent property for
{f > 0} (and also for {f < 0}). In particular, the absence of an unbounded component
in {f = 0} implies the absence of an unbounded component in {f = `} for every `.

For the RPW (for which we do not have κ ≥ 0!), the fact that {f = 0} has no
unbounded component is still a conjecture. It is actually expected that under very weak
assumptions (and maybe even for any field that satisfies the general hypotheses of these
notes), {f = 0} has no unbounded component.

The following is a more quantitative version with stronger hypotheses. We let
Arm`(R) denote the event that there is a component of {f = `} that crosses both
the circle of radius 1 and the circle of radius R. Note that P [ArmR(`)] converges to the
event that there is an unbounded component in {f = `} that crosses the circle of radius
1.

Theorem 2.5. • [BG17], extended in [BM18, RV17b, MV18] Consider the B-F
field, the field gα, α > 4 (w.s.w.a.), or the field gα, α ∈]2, 4] with some strong
hypotheses on κα. Then, (i) there exist C, c > 0 such that P[Arm0(R)] ≤ CR−c

and (ii) for any a > 0, the event that there is a crossing from left to right of
[−aR, aR] × [−R,R] by a nodal line has probability bounded away from 0 and 1
uniformly in R.

6Here the positivity of the covariance of gα is not important: what is crucial is just that |κα(x)| ≤
|x− y|−α.

7See the footnote 6.
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• [RV17a, MV18, Riv19] For the B-F and for gα, α > 2 with some strong hypotheses
on κα, for every ` 6= 0 there exist C, c > 0 such that P[Arm`(R)] ≤ Ce−cR.

From a percolation point of view, this might seem surprising to study the level lines,
which are the interfaces between the excursion sets {f > `} and {f < `}, rather than
these excursion sets themselves. Let us state some properties of these excursion sets.

For the fields for which the exponential decay of Theorem 2.5 is proved, it is also
proved that the percolation critical point is 0 in the sense that there is a.s. an unbounded
component in {f > `} if ` < 0 but this is a.s. not the case if ` ≥ 0 (as explained above,
the case ` ≥ 0 comes from [Ale96]). A finite size version of this property is that the
probability that there is a crossing from left to right of [−aR, aR] × [−R,R] included
in {f > `} goes to 0 (exponentially fast) if ` > 0 and goes to 1 (exponentially fast) if
` < 0. In the previous subsections, we stated concentration results for the length and the
number of connected component. Let us keep this point of view: the finite size version
of the phase transition is a consequence of the following concentration result.

Theorem 2.6. [RV17a, MV18, Riv19, GV19]8 Fix some a > 0. Let TR denote the
threshold function i.e. the supremum of all levels ` such that there is a crossing from
left to right of [−aR, aR] × [−R,R] included in {f > `}. Then, for the B-F field and
for gα, α > 2 with some strong hypotheses on κα, Var(TR) goes to 0 as R goes to +∞
polynomially fast.

We will see later that w.s.w.h. on the field, we have that Var(TR) is bounded uni-
formly in R.

Note that there exists a left-right crossing in {f ≥ TR} and that there is a top-bottom
crossing in {f ≤ TR}. W.s.w.h., a.s. for every level ` there is at most one critical point
at level `. That implies that there exists a.s. a unique point SR (the “saddle point”)
such that: (i) f(SR) = TR, (ii) there exists a left-right crossing γ ⊂ {f ≥ TR} such that
SR ∈ γ and f > TR on γ\{SR} and (iii) there exists a top-bottom crossing γ ⊂ {f ≤ TR}
such that SR ∈ γ and f < TR on γ \ {SR}.

We will see in Section 3 that the fact that Var(TR) goes to 0 is equivalent to some
“spatial chaotic behavior” of the saddle point.

One of the main questions in the study of percolation of Gaussian fields is: do the
models behave like Bernoulli percolation? It is actually conjectured that for the B-F
field, the RPW and for gα, α > 3/2, the model has the same scaling limit as Bernoulli
percolation (i.e. the probabilities of crossings at level 0 are given by the Cardy formula
and the scaling limit of the interface is the SLE6 process, ...).9 In particular, it is believed
that for these processes we have Var(TR) = R−3/2+o(1). As we will see later, this property
is not true for gα if α ∈]0, 3/2[ (here the positivity of the covariance of gα is crucial).

It might not be very surprising that we expect that the model has the same scaling
limit as Bernoulli percolation when the covariance decays fast since this sems to be equiv-
alent to some spatial independence property (we will say more about this below). What

8The concentration point of view comes from [Riv19].
9See for instance the lecture notes [Wer07] for a survey on planar Bernoulli percolation.
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SR

Figure 3: The saddle point of the crossing event. In full line: f > Tn; in dashed line:
f < Tn; f(Sn) = Tn.

might be more surprinsing is that it is believed that the percolation model constructed
by using the RPW - whose covariance decays like 1/

√
|x− y| - behaves like Bernoulli

percolation and that this is not the case for g1/2. The idea is that the oscillations of the
covariance of the RPW should help to have some spatial mixing.

As we mentioned above, the B-F field and the RPW are very rigid. Concerning the
B-F field: (i) on the one hand this is an analytic function so knowing f in a small ball
freezes the whole field, (ii) on the other hand the covariance of f decays very fast to 0 at
infinity, which suggests a lot of spatial independence. One of the goals is to find suitable
classes of events that satisfy spatial independence properties. We have the following.

Theorem 2.7. Let BR, B
′
R be two boxes of size R at distance R from each other

and fix some level `.

• For the B-F and for gα, α > 4 (w.s.w.h.)10, Cov(1AR , 1A′R) goes to 0 as R goes +∞
if AR (resp. A′R) are events measurable with the crossing of a rectangle included in
BR (resp. B′R) or with the number of loops in BR (resp. B′R). [RV17b, BMR18]

• For the B-F and for gα, α > 2 with some strong hypothesis on κα, the above is
true for any monotonic events. [MV18]

As a result, the analytic rigidity of the B-F field does not really affect the percolation
events and the events measurable with respect to the number of connected components.

It is believed that, for the RPW, the above is true for for percolation events.

10See the footnote 6.
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3 Concentration formulas, superconcentration and chaos

Most of the results that were stated above are estimates on the variance of some quanti-
ties related to Gaussian fields i.e. concentration results for these fields. In this section,
we compute a general formula for the variance of Gaussian functional and we try to
apply it to these quantities. This approach is inspired by [Pit12, Cha08]. In particular,
the ideas from [Cha08] will help us to: (i) derive some “spatial chaos property”, (ii) to
prove that if the covariance is positive and decays much faster than |x|−3/2, then the
associated percolation model does not behave like Bernoulli percolation and (iii) prove
some estimates on the variance of the number of connected components for analogous
discrete Gaussian models.

3.1 A formula for the variance

This subsection is based on [Cha08]. We prove a formula for the variance of a functional
of a Gaussian vector.

Proposition 3.1. Let K be an n×n covariance matrix and let X, X̃ be two independent
centered Gaussian vectors of covariance K. For each t ≥ 0, let Xt = e−tX+

√
1− e−2tX̃.

Then, for each L2 continuous function F : Rn → R that satisfies that a.s. for every i,
∂iF exists and is in L∞, we have

Var(F (X)) =

∫ +∞

0
e−t

∑
1≤i,j≤n

K(i, j)E[∂iF (X)∂jF (Xt)]dt.

Moreover, the quantity
∑

1≤i,j≤nK(i, j)E[∂iF (X)∂jF (Xt)] is non-negative and non-increasing
in t.

Proof. Let us first deal with the i.i.d. case K = Idn. We have

Var(F (X)) = E
[
F (X)(F (X)− F (X ′))

]
=

∫ ∞
0

d

dt
E [F (X)F (Xt)] dt.

One can prove that

d

dt
E [F (X)F (Xt)] = e−t

∑
i

E [∂iF (X)∂iF (Xt)] ,

which gives the formula in the i.i.d. case. In order to obtain the formula in the general
case, one can consider Y, Ỹ independent Gaussian vectors of covariance Idn, let X =√
KY , X̃ =

√
KỸ , and apply the formula in the i.i.d. case to the function G : x 7→

G(
√
Kx). One thus obtains the result since∑

i

E [∂iG(Y )∂iG(Yt)] =
∑
i,j

K(i, j)E [∂iF (X)∂jF (Xt)] .

Let us now prove the non-negativity and the monotonicity properties. By the above,
it is sufficient to prove this in the i.i.d. case. So let us assume that K = Idn. Next, we

11



note that Pt : F 7→ E [F (Xt) | X0 = •] is a symmetric Markov semi-group (this is the
so-called Ornstein-Uhlenbeck semi-group). As a result,

E [∂iF (X)∂iF (Xt)] = E
[
Pt/2(∂iF )(X)2

]
.

This proves the non-negativity property. One can also note that E
[
Pt/2(∂iF )(X)2

]
−

E
[
P(t+s)/2(∂iF )(X)2

]
is the expectation of the variance of Pt/2(∂iF )(Xs/2) under the

probability measure P [• | X0 = x] evaluated at x = X. This proves the monotonicity
property.

Let us note that exactly the same proof implies that for two functions F,G we have

Cov(F (X), G(X)) =

∫ +∞

0
e−t

∑
1≤i,j≤n

K(i, j)E[∂iF (X)∂jG(Xt)]dt.

3.2 An application to the threshold function

Let us apply the formula to the threshold function of Gaussian field percolation. We
first need to define a dynamics and discretize the field (since the formula is for Gaussian
vectors). First, as above, we let ft = e−tf +

√
1− e−2tf̃ where f̃ is an independent

copy of f . Consider the regular hexagonal lattice, whose dual is the regular triangular
lattice T. Given ` ∈ R and v ∈ T, color in black the hexagon centered at v if f(v) > `
and in white if f(v) < `. Let TR be the supremum of all levels ` such that there is a
black left-right crossing of [−aR, aR] × [−R,R]. Also let TR denote the set of sites of
the triangular lattice that belong to [−aR, aR]× [−R,R]. We study the Gaussian vector
(f(v))v∈TR of covariance K(v, w) = κ(v − w). Note that ∂vTR = 1SR=v where SR is the
coordinate v such that f(v) = TR. If K has full rank (which we assume here) then such
a v is a.s. unique, therefore

Var(TR) =

∫ +∞

0
e−t
∑
v,w

K(v, w)P [SR(0) = v, SR(t) = w] dt

=

∫ +∞

0
e−tE [κ(SR(0)− SR(t))] dt.

W.s.w.h., the saddle point is also unique for the continuous model. So by applying the
above formula on the hexagonal lattice multiplied by ε and by letting ε go to 0, we
obtain that for the continuous percolation model on f we also have

Var(TR) =

∫ +∞

0
e−tE [κ(SR(0)− SR(t))] dt.

Note that this gives a uniform bound on Var(TR): this quantity is less than or equal to
κ(0).

By the above, E [κ(SR(0)− SR(t))] is non-negative and non-increasing. Therefore,if
κ only takes positive values, then Var(TR) goes to 0 if and only if, for every t > 0,
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E [κ(SR(0)− SR(t))] goes to 0 i.e. if SR(0) − SR(t) goes to ∞ in probability. Such a
behavior in an example of a chaotic behavior as defined in a more general way in [Cha08].

Note also that this formula also implies that gα cannot be in the universality class
of percolation if α < 3/2. Indeed, in this case we have E [κ(SR(0)− SR(t))] ≥ cR−α and
in the universality class of percolation we have Var(TR) = R−3/2+o(1) ([SW01]).

In this context, the inequality Var(TR) ≤ κ(0) is the Poincaré inequality:

Var(F (X)) ≤
∑

1≤i,j≤n
K(i, j)E[∂iF (X)∂jF (X)].

In [Riv19] it is proved that Var(TR) goes to 0 for gα, α > 2 (with some strong hypotheses
on κα) by using a superconcentration formula (i.e. an improvement of the Poincaré
inequality) in the i.i.d. case. This superconcentration formula (from [Tal94, CEL12]) is
applied by considering a white noise decomposition of the field f (which enables to have
an i.i.d. process at our disposal). We do not give more details here.

3.3 An application to the number of connected components

Let us now apply the formula for the variance to the number of connected components.
The problem is that this quantity does not satisfy the hypotheses of Proposition 3.1. By
approximation, one can actually obtain the following result.

Proposition 3.2. Let X,K,Xt be as in Proposition 3.1 and assume furthermore that
K has full rank. Let ` ∈ R and let F,G : Rn → R be two functions which are measurable
with respect to σ({xi ≥ `}, i = 1, · · · , n). If x ∈ Rn, we let x⊕i ∈ Rn be the vector defined
by x⊕ij = xj if j 6= i and x⊕ii = ` + 1 (or any other number larger than `). We define

similarly x	i but with x	ii = `− 1. Then,

Cov(F (X), G(X)) =

∫ +∞

0
e−t

∑
1≤i,j≤n

K(i, j)γ(X(i),Xt(j))(`, `)

E
[(
F (X⊕i)− F (X	i)

)(
G(X⊕jt )−G(X	jt )

) ∣∣∣X(i) = Xt(j) = `
]
dt ,

where γ(X(i),Xt(j)) is the density function of (X(i), Xt(j)) (note that γ(X(i),Xt(j))(`, `) ≤
C/
√
t for some constant C that depends only on K).

Proof. The proof is by approximation. To understand how the above appears, consider
some C1 function F that satisfies the hypotheses of the previous proposition and note
that, if X is non-degenerate, then

E [∂iF (X)] = −
∫
Rn
F (X)∂iγX(x)dx,

13



γX is the density function of X. If we rather a consider a function F which is measurable
with respect to σ({xi ≥ `}, i = 1, · · · , n), then

−
∫
Rn
F (X)∂iγX(x)dx

=

∫
Rn−1

(
F (x⊕i)− F (x	i)

)
γXi(x1, · · · , xi−1, `, xi+1, · · · , xn)dx1 · · · dxi−1dxi+1 · · · dxn

= E
[
F (X⊕i)− F (X	i) | Xi = `

]
γXi(`).

By approximation of F,G by smooth functions and by a similar computation as above,
we have the desired result.

Note that, in the case of increasing events A,B measurable with respect to σ({xi ≥
`}, i = 1, · · · , n), Proposition 3.2 implies that

Cov(1X∈A, 1X∈B) =

∫ +∞

0
e−t

∑
1≤i,j≤n

K(i, j)γ(X(i),Xt(j))(`, `)

× P [X ∈ Pivi(A), Xt ∈ Pivj(B) | X(i) = Xt(j) = `] dt ,

where Pivi(A) is the pivotal event i.e. the event that changing the sign of Xi − `
changes the outcome of A. In particular, this implies the so-called FKG inequality:
Cov(1X∈A, 1X∈B) ≥ 0 if the coefficients of K are non-negative.

Consider the discrete Gaussian model on the triangular lattice considered in Sub-
section 3.2 and let NR(`) denote the number of connected components of the interface
between black and white restricted to [−R,R]2. Note that changing the color of one
hexagon can change the value of NR by at most 2. So we obtain that

Var(NR) ≤
∫ +∞

0
e−t

∑
v,w∈TR

|κ(v − w)| C√
t
× 22dt = C ′

∑
v,w∈TR

|κ(v − w)|,

where TR is the triangular grid restricted to [−R,R]2. For the B-F field and for gα
with α > 2, κ is L1, so the above is at most CR2, which is the expected behavior. One
direction in order to prove this upper-bound for the model in the continuum is to consider
a grid of mesh ε and estimate more precisely the quantities in the formula (without a
careful study we just obtain that Var(NR) ≤ CR2/ε4). Let us mention that an analogous
study (but which is easier since the events that are considered live on disjoint domains)
enables to prove the first part of the quasi-independence result Theorem 2.7 (and one
can see that the exponent α > 4 is indeed what one needs so that, if BR, B

′
R are two

boxes of size R at distance R from each other,
∑

v∈T∩BR,w∈T∩B′R
κ(v − w) goes to 0).

4 Some original motivations

In this section, we explain some motivations.
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4.1 Hilbert’s 16th problem

In the case of the 2-dimensional sphere, Hilbert’s 16th problem is the following: Let P ∈
Rhomd [x0, x1, x2]; describe {P = 0}∩S2 (number of connected components? arrangement
of the connected components?). The connected components (which are topological circles
if there is no degeneracy) have a forest structure: can we describe this forest? The
following has been proved by Harnack in 1876: the supremum of the number of connected
components equals d2−3n+ 4. A general classification of the homogeneous polynomials
according to Hilbert’s problem seems out of reach and analogous questions have been
studied for random models. For instance, it is proved in [GW11] that, if Pd is a Kostlan
polynomial of degree d, then the probability that the number of connected components of
its zero set is of order d2−3n+4 is exponentially small. The local properties of the forest
structure have been studied in in the case of Riemannian models (the result is essentially
that locally any tree structure can be found) in [SW19, CS19]. Analogous questions have
been studied in higher dimensions. In particular, it is proved that locally any topology
can be found in the zero set of random models for algebraic and Riemannian models
[GW14b, CS14].

4.2 Berry’s and Bogomolny and Schmit’s conjectures

Consider a compact Riemannian surface S with negative curvature, let 0 = λ1 ≤ λ2 ≤
λ3 ≤ · · · be the eigenvalues of −4M (it is known that λj converges to +∞) and let (ϕj)j
denote a corresponding orthonormal L2 basis (in particular, 4Sϕj = −λjϕj). Berrys
conjecture [Ber77] states that the RPW is “a good modeling for the determinictic
eigenfunctions ϕj”. One way to state more precisely this is as follows (see [Ing17, ABM18]
for more rigorous approaches): let X be a random uniform point on S and zoom at scale
1/
√
λj around X. This model converges to the RPW as j → +∞.

Motivated by this conjecture which suggests some universal behavior for the eigen-
functions of 4S , Bogomolny and Schmit have conjectured that in some way RPW has
the same behavior as Bernoulli percolation [BS02, BS07, BDS07]. This can be stated as
follows (and the following conjecture is also believed to hold for the B-F field and the
fields gα, α > 3/2): consider a quad Q (i.e. a Jordan domain with two distinguished
disjoint segments on its boundary). Then, the probability that a nodal line crosses
RQ converges as R → +∞ to a conformal invariant quantity that is the same as for
Bernoulli percolation (the fact that this quantity converges has only be proved in the
case of Bernoulli percolation on the triangular lattice [Smi01]).
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