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Abstract. These are the notes for a talk given on 17/10/2019 as part of the
reading group ‘Nodal lines of smooth Gaussian fields’ (at ETH and UZH Zürich).
We explain Nazarov and Sodin’s proof of the law of large numbers for the number
of nodal surfaces for very general continuously differentiable Gaussian fields.
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1. Introduction

Given a random subset of Rd, a natural question to ask is ‘How fast does the
number of its connected components contained in a ball grow as a function of the
radius?’. Here, we will consider zero sets Z(f) = f−1({0}) of certain random
functions f : Rd → R with Gaussian finite-dimensional marginals.

Before discussing this, let us elaborate on the analogous question (and its answer)
in the case of percolation. ‘How fast does the number of percolation clusters in a
box grow as a function of the width of the box?’. Let π be a Bernoulli percolation
with parameter p ∈ [0, 1] on Zd and let Kn be the number of percolation clusters
that are completely contained in the box [−n, n]d, then

Kn

(2n+ 1)d
→ E(1/#C0) a.s. and in L1 as n→∞ ,

where Cx is the percolation cluster containing x ∈ Zd. The proof idea is simple, see
[Gri89, Chapter 4] for details. By ergodicity of Bernoulli percolation under shifts,
a suitable ergodic theorem implies

1

(2n+ 1)d

∑
x∈[−n,n]d

1

#Cx
→ E(1/#C0) a.s. and in L1 as n→∞ .

We conclude by noting that∑
x∈[−n,n]d

1

#Cx
= Kn +

∑
x∈[−n,n]d :
Cx\[−n,n]d 6=∅

1

#Cx
= Kn +O(nd−1) ,

since 1/#Cx ≤ 1 for all x ∈ Zd and because the number of clusters intersecting the
boundary is clearly bounded by the boundary’s size, which is O(nd−1).

The approach we are considering here will be similar – we will apply an ergodic
theorem to well-chosen functions and develop good estimates to control how far
the ergodic averages are from the quantities we would like to understand.

From now on, we will consider a centred Gaussian field f = (f(x) : x ∈ Rd)
with covariance structure E(f(x)f(y)) = K(x, y) and K(x, x) > 0. The main
assumption will be that f is stationary i.e. (f(x+ v) : x ∈ Rd) =d f for all v ∈ Rd;
this is equivalent to K being of the form K(x, y) = k(x−y). By Bochner’s theorem,
one deduces that k can be represented as

k(x) =

∫
ei〈x,ζ〉 ρ(dζ)

for a unique finite Borel measure ρ on Rd called the spectral measure of f .
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Without loss of generality, we may restrict ourselves to the case k(0) = 1; indeed
replacing f by (k(0)−1/2f(x) : x ∈ Rd) will not affect the zero set.

Example 1.1. A good example to keep in mind is the following: For d = 1, consider
ζ1, . . . , ζn ∈ R and w1, . . . , wn ≥ 0. Now define

ρ =
∑
i

wi(δζi + δ−ζi) , k(x) =
∑
i

wi cos(ζix)

and f(x) =
∑
i

√
wi (ai cos(ζix) + bi sin(ζix)) ,

where (ai, bi : i = 1, . . . , n) are i.i.d. N(0, 1). Then f has covariance k and spectral
measure ρ. Intuitively, ρ measures the variances of the individual Fourier modes
(and in the stationary case, they all decouple).

It is important to choose a good version of f . A suitable space to consider is
C1
∗(Rd) = {α ∈ C1(Rd) : |α(x)| + |∇α(x)| > 0 ∀x ∈ Rd}, which carries the

σ-algebra generated by πv : C1
∗(Rd)→ R given by πv(α) = α(v) for v ∈ Rd.

Note that α ∈ C1
∗(Rd) if and only if ∇α(x) 6= 0 for all x ∈ Z(α) which by the

implicit function theorem implies that Z(α) is a codimension 1 submanifold of Rd.
We let N(v, r, α) be the number of connected components of Z(α) contained in
Br(v) and N#(v, r, α) be the number of connected components of ∂Br(v) \ Z(α).
We leave it as an exercise to prove that

N : Rd × (0,∞)× C1
∗(Rd)→ N0 and N# : Rd × (0,∞)× C1

∗(Rd)→ N0

are measurable. The aim of these notes is to prove the following (this is a special
case of [NS16, Theorem 1]):

Theorem 1.2 (Nazarov, Sodin). Suppose that the spectral measure satisfies
(i)
∫
|ζ|4 ρ(dζ) <∞,

(ii) ρ has no atoms,
(iii) the support of ρ is not contained in any hyperplane.
Then f has a version in C1

∗(Rd) and there exists ν ∈ [0,∞) such that
1

λ(BR(0))
N(0, R, f)→ ν a.s. and in L1 as R→∞ .

Some remarks on the assumptions: (i) will guarantee the existence of a C2−(Rd)
version of f , (ii) will imply ergodicity of f under shifts and (iii) will then yield the
existence of a C1

∗ (Rd) version, together with more quantitative results that will be
key in establishing certain moment bounds. Also note that k ∈ C4(Rd) is
equivalent to (i), k(x)→ 0 as |x| → 0 implies (ii), and rotational invariance of the
model implies (iii) (assuming (ii) and k non-constant).
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2. Sandwiching the number of nodal surfaces

Lemma 2.1. For α ∈ C1
∗(Rd) and 0 < r < R, we have∫

BR−r(0)

N(x, r, α)

λ(Br(0))
dx ≤ N(0, R, α)

≤
∫
BR+r(0)

N(x, r, α)

λ(Br(0))
dx+

∫
BR+r(0)

N#(x, r, α)

λ(Br(0))
dx .

Proof. Let C1, . . . , Cn with n = N(0, R, α) be the connected components of Z(α)
contained in BR(0). Note that for each i,∫

BR−r(0)

1(Ci ⊂ Br(x)) dx ≤ λ(Br(0)) ≤
∫
BR+r(0)

1(Ci ∩Br(x) 6= ∅) dx .

Summing this over i yields∫
BR−r(0)

N(x, r, α)

λ(Br(0))
dx ≤ N(0, R, α)

≤
∫
BR+r(0)

N(x, r, α)

λ(Br(0))
dx+

∫
BR+r(0)

A(x)

λ(Br(0))
dx ,

where A(x) = #{1 ≤ i ≤ n : Ci 6⊂ Br(x) , Ci ∩ Br(x) 6= ∅}. Note that for a.e.
x ∈ BR+r(0), each Ci with Ci 6⊂ Br(x) and Ci ∩Br(x) 6= ∅ is nowhere tangent to
∂Br(x) so that then Ci divides ∂Br(x) into at least two components; and therefore,
since the Ci are disjoint, we deduce A(x) ≤ N#(x, r, α). �

Both the left- and the right-hand side of the sandwich estimate look promising
for an application of an ergodic theorem. Before establishing integrability of the
terms in the integrals, we state the ergodic theorem we are going to use, together
with a criterion for ergodicity.

3. Ergodic theorem

Theorem 3.1 (Wiener’s ergodic theorem). Let (E, E) be a measure space and
(τv : E → E : v ∈ Rd) a family of maps such that (v, x) 7→ τv(x) is measurable from
Rd × E to E. Moreover define I = {A ∈ E : τ−1v (A) = A ∀v ∈ Rd}. Let ξ be a
random variable in E s.t. τvξ =d ξ for all v ∈ Rd. Then for any α : E → R with
α(ξ) ∈ L1 we have

1

λ(BR(0))

∫
BR(0)

α(τvξ) dv → E(α(ξ) | ξ−1I) a.s. and in L1 as R→∞ .

Note that in the ergodic case ξ−1I is (by definition) trivial so that the limit is a
constant, namely E(α(ξ) | ξ−1I) = E(α(ξ)).

Proof. Omitted, see [Bec81, Theorems 2 and 3]. �
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Theorem 3.2 (Fomin, Grenander, Maruyama). Define τv : C(Rd) → C(Rd) by
τv(α) = α ·+v and πv : C(Rd) → R by πv(α) = αv whenever v ∈ Rd. Consider
a set E ⊂ C(Rd) which is invariant under τv for all v ∈ Rd and endow it with
E = σ(πv|E : v ∈ Rd). If f ∈ E is a stationary Gaussian field and its spectral
measure ρ has no atoms, then f−1I is trivial.

Proof. Assume that A ∈ E is such that τ−1v (A) = A for all v ∈ Rd, then we need
to show that P(f ∈ A) ∈ {0, 1}. There are xk ∈ Rd (where k ≥ 1) and functions
αk : Rk → [0, 1] such that αk(πx1 , . . . , πxk) ↑ 1A as k →∞. Then

P(f ∈ A) = P(f ∈ A, τvf ∈ A)

≤ E(αk(fx1 , . . . , fxk)αk(fx1+v, . . . , fxk+v))

+ 2E |1(f ∈ A)− αk(fx1 , . . . , fxk)| .

It suffices to show lim inf |v|→∞ cov(αk(fx1 , . . . , fxk), αk(fx1+v, . . . , fxk+v))) = 0 since
this implies

P(f ∈ A) ≤ E(αk(fx1 , . . . , fxk))2 + 2E |1(f ∈ A)− αk(fx1 , . . . , fxk)|
→ P(f ∈ A)2 as k →∞ ,

hence P(f ∈ A) ∈ {0, 1}. To see this, observe that for c = maxij |xi − xj|,
1

λ(BR(0))

∫
BR(0)

∑
ij

k(xi − xj + v)2 dv

≤ k2

λ(BR(0))

∫
BR+c(0)

k(x)2 dx→ k2
∑
ζ∈Rd

ρ({ζ})2 = 0

as R→∞ where the convergence above follows from Wiener’s lemma. Therefore
lim inf |v|→∞

∑
ij k(xi − xj + v)2 = 0 and the result follows. �

4. Versions and moment bounds

By assumption (i), the covariance function k is in C4(Rd). By Kolmogorov’s
extension theorem, this implies that f has a C2−(Rd) version and (switching to
such a version), the Hölder norm

‖f‖Br(x),1+β = sup
Br(x)

|f |+ sup
Br(x)

|∇f |+ sup
v,w∈Br(x) : v 6=w

|∇f(v)−∇f(w)|
|v − w|β

has a Gaussian tail and hence moments of all orders p <∞ for r > 0 and x ∈ Rd

whenever β ∈ (0, 1). The key in the proofs of this section will be the definition of
the following functions:

Φ(x) = |f(x)|−t|∇f(x)|−td

Ψ(x) = |f(x)|−t|∇Sf(x)|−t(d−1) (x 6= 0) .
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Here, ∇Sf(x) = ∇f(x) − 〈∇f(x), x〉x/|x|2 is the projection of ∇f(x) onto the
plane perpendicular to x.

Lemma 4.1. For each x ∈ Rd, f(x) and ∇f(x) are independent and the law of
(f(x),∇f(x)) is non-degenerate. Moreover, for tp < 1, EΦ(0)p,EΨ(0)p <∞.

Proof. We have E(f(x)∂if(x)) = ∂ik(0) but by definition, k(x) = k(−x) and hence
∂ik(0) = 0. By independence, it is enough to show that ∇f(x) is non-degenerate
(recall that f(x) ∼ N(0, 1)). Suppose not, then since it is Gaussian, there exists
v ∈ Rd \ {0} such that 〈∇f(x), v〉 = 0 a.s. and hence

0 = E〈∇f(x), v〉2 = −
∑
ij

vivj∂ijk(0) =

∫
〈v, ζ〉2 ρ(dζ)

so that the support of ρ is contained in the hyperplane perpendicular to v which
contradicts assumption (iii). The last claim follows from E|X|−α < ∞ for X ∼
N(0, In) and α < n combined with a change of variables. �

Lemma 4.2. Almost surely |f(x)|+ |∇f(x)| > 0 for all x ∈ Rd.

Proof. Fix R > 0. For t < 1 we get

∞ > Rd EΦ(0) = E
∫
BR(0)

Φ(x) dx = E
∫
BR(0)

|f(x)|−t|∇f(x)|−td dx .

If f(x0) = 0 and ∇f(x0) = 0 at some point x0 ∈ BR(0), then∫
BR(0)

|f(x)|−t|∇f(x)|−td dx ≥
∫
BR(0)

‖f‖−t(1+d)BR(0),1+β|x− x0|
−t(1+dβ) dx .

Take t, β ∈ (0, 1) so that d > t(1 + dβ); then the last integral diverges and hence
a.s. there is no such point x0. �

Proposition 4.3. There exists a constant C > 0 such that for all R ≥ 1,
EN(0, R, f) ≤ CRd and EN#(0, R, f) ≤ CRd−1.

Proof. We first prove EN(0, R, f) ≤ CRd. Let C1, . . . , Cn be the connected
components of BR(0) \ Z(f) which have their closure contained in BR(0). Then
N(0, R, f) ≤ n. Pick zi ∈ Ci such that ∇f(zi) = 0 and let ri = d(zi, ∂Ci). Then
Bri(zi) ⊂ Ci and ∂Bri(zi) ∩ ∂Ci 3 xi, say. Thus

|f(x)| ≤ ‖f‖Bri (zi),1+β
|x− xi| and |∇f(x)| ≤ ‖f‖Bri (zi),1+β

|x− zi|β

for x ∈ Bri(zi). If ri ≤ 1,∫
Bri (zi)

Φ =

∫
Bri (zi)

dx

|f(x)|t|∇f(x)|td
≥ ‖f‖−t(1+d)Bri (zi),1+β

∫
Bri (zi)

dx

|x− xi|t|x− zi|tdβ

≥ C‖f‖−t(1+d)Bri (zi),1+β
r
d−t(1+dβ)
i

for a constant C > 0.
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Choose t, β ∈ (0, 1) with d−t(1+dβ) ≤ 0, which implies rd−t(1+dβ)i ≥ 1. Moreover,
the number of i for which ri > 1 is clearly bounded by λ(BR(0))/λ(B1(0)) = Rd,
so that by summing over i we get

N(0, R, f) ≤ n ≤ Rd + C−1
∑
i : ri≤1

‖f‖t(1+d)Bri (zi),1+β

∫
Bri (zi)

Φ

≤ Rd + C−1
∑
i : ri≤1

∫
Bri (zi)

Φ(x)‖f‖t(1+d)B2ri
(x),1+β dx

≤ Rd + C−1
∫
BR(0)

Φ(x)‖f‖t(1+d)B2(x),1+β
dx .

By taking expectations, using stationarity and observing

E(Φ(0)‖f‖t(1+d)B2(0),1+β
) ≤ E(Φ(0)p)1/p E(‖f‖tq(1+d)B2(0),1+β

)1/q <∞

for p ∈ (1, 1/t) and 1/p+ 1/q = 1, we obtain the claim.

The proof of the second assertion is entirely analogous: There, one lets C1, . . . , Cn
with n = N#(0, R, f) be the connected components of ∂BR(0)\Z(f), takes zi ∈ Ci
such that ∇Sf(zi) = 0 (e.g. by taking zi such that |f(zi)| = supCi

|f |), defines
ri = d(zi, ∂Ci) and chooses xi ∈ ∂Bri(xi) ∩ ∂Ci with ∂Ci being the boundary of Ci
within the sphere ∂BR(0). Let us write σ for the (non-normalised) surface measure
supported on ∂BR(0). We note that for x, y ∈ Bri(zi),

|∇Sf(x)−∇Sf(y)| ≤ |∇f(x)−∇f(y)|+ |〈x,∇f(x)〉x/R2 − 〈y,∇f(y)〉y/R2|
≤ ‖f‖Bri (zi),1+β

(
2 · |x− y|β + 2/R · |x− y|

)
≤ C‖f‖Bri (zi),1+β

|x− y|β

for some universal constant C > 0. Then for ri ≤ 1,∫
Bri (zi)

Ψ(x)σ(dx) =

∫
Bri (zi)

σ(dx)

|f(x)|t|∇Sf(x)|t(d−1)

≥ C−t(d−1)‖f‖−tdBri (zi),1+β

∫
Bri (zi)

σ(dx)

|x− xi|t|x− zi|tβ(d−1)

≥ C ′‖f‖−tdBri (zi),1+β
r
d−1−t(1+β(d−1))
i

for some C ′ > 0. Choose t, β ∈ (0, 1) such that d−1−t(1+β(d−1)) ≤ 0. Again, we
note that the number of i with ri > 1 is bounded by σ(∂BR(0))/σ(B1(R, 0, . . . , 0)) =
O(Rd−1). Therefore, for some constant C ′′ > 0,

N#(0, R, f) = n ≤ C ′′

(
Rd−1 +

∑
i : ri≤1

‖f‖tdBri (zi),1+β

∫
Bri (zi)

Ψ(x)σ(dx)

)
and one concludes the proof in the same way as in the first case. �



LAW OF LARGE NUMBERS FOR THE NUMBER OF NODAL SURFACES OF A GAUSSIAN FIELD8

5. Proof of the main theorem

Proof. From the previous section, we know that f has a C1
∗(Rd) version, that

N(0, r, f) and N#(0, r, f) are integrable for each r > 0 and that
EN(0, r, f)

λ(Br(0))
= O(1) and

EN#(0, r, f)

λ(Br(0))
= O(1/r)(?)

as r → ∞. In particular, we can take a sequence rk → ∞ such that
λ(Brk(0))−1 EN(0, rk, f)→ ν as k →∞ for some ν ∈ [0,∞). Using the sandwich
estimate, we get∣∣∣∣N(0, R, f)

λ(BR(0))
− ν
∣∣∣∣ ≤ ∣∣∣∣N(0, R, f)

λ(BR(0))
− EN(0, r, f)

λ(Br(0))

∣∣∣∣+

∣∣∣∣EN(0, r, f)

λ(Br(0))
− ν
∣∣∣∣

≤

∣∣∣∣∣ (1− r/R)d

λ(BR−r(0))

∫
BR−r(0)

N(x, r, f)

λ(Br(0))
dx− EN(0, r, f)

λ(Br(0))

∣∣∣∣∣
+

∣∣∣∣∣ (1 + r/R)d

λ(BR+r(0))

∫
BR+r(0)

N(x, r, f)

λ(Br(0))
dx− EN(0, r, f)

λ(Br(0))

∣∣∣∣∣
+

∣∣∣∣∣ (1 + r/R)d

λ(BR+r(0))

∫
BR+r(0)

N#(x, r, f)

λ(Br(0))
dx− EN#(0, r, f)

λ(Br(0))

∣∣∣∣∣
+

∣∣∣∣EN(0, r, f)

λ(Br(0))
− ν
∣∣∣∣+

EN#(0, r, f)

λ(Br(0))
.

For fixed r > 0, the first three terms on the right-hand side of the estimate tend to
0 a.s. and in L1 as R → ∞ by our ergodic theorem; indeed
N(x, r, f) = N(0, r, τvf) and N#(x, r, f) = N#(0, r, τvf), also integrability follows
from (?), ergodicity from assumption (i) and finally it is easy to control the effect
of the (1± r/R)d terms (separately in the a.s. and L1 case).

Also, by taking r = rk, the last two terms tend to 0 as k →∞ (uniformly in R,
trivially). Both in the a.s. and in the L1 case, it is easy to combine the two results
above to finish the proof. �

Remark 5.1. The sandwich estimate also holds with N(0, R, α) replaced by the
number of connected components of Z(α) intersecting BR(0) and one can then
easily check that the analogous law of large numbers (also a.s. and in L1) holds
with the same limit ν ≥ 0.
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