
Series 0

Advanced Numerical Methods for
CSE
Last edited: September 17, 2019
Due date: No due date

Template codes are available on the course’s webpage at https://metaphor.ethz.ch/x/2019/hs/
401-4671-00L/.

Exercise 1 Linear transport equation in 1D

Consider the linear transport equation in one dimension with initial data u0:

∂u

∂t
(x, t) + a(x)

∂u

∂x
(x, t) = 0, (x, t) ∈ (xl, xr)× R, (1)

u(x, 0) = u0(x), x ∈ [xl, xr], (2)

with a : R −→ R. We neglect boundary conditions for now.

Hint: If you have clang−tidy installed and you are using clang as your compiler, you may wish to
pass −DHAS CLANG TIDY=1 as an argument to cmake.

1a)

Derive the equation for the characteristics. Assuming a(x) = 1
2 , draw manually or produce a plot

of the characteristic lines in the (x, t)-plane. How would they look for a(x) = sin(2πx)?

Hint: For the second question, you should use a numerical ODE solver.

1b)

Explain why the solution u to (1) is constant along the characteristics.

1



We now want to compute an approximate solution to (1). For time discretization, we will always use
the forward Euler scheme, while for space discretization we consider two different finite difference
schemes: centered, and upwind.

1c)

In the template file linear transport.cpp, implement the function

std::pair<Eigen::MatrixXd, Eigen::VectorXd>

centeredFD(const Eigen::VectorXd &u0, double dt, double T,

const std::function<double(double)>& a,

const std::pair<double, double> &domain);

that computes the approximate solution to (1) using the forward Euler scheme for time discretiza-
tion and centered finite differences for space discretization. The arguments of the function centeredFD

are specified in the template file. The input argument N denotes the number of grid points including
the boundary points, i.e. x[0] = xL, x[N-1] = xR. Take xl = 0, xr = 5.

Outflow boundary conditions are a simple way of modeling a larger physical domain. For a given
discretization xl = x1 < x2 < · · · < xN = xr, we consider two additional ghost points: x0 and
xN+1. We consider that at every time step n, un0 = un1 and unN+1 = unN . This allows information
to flow out of the domain, but not in. Assume outflow boundary conditions.

1d)

In the template file linear transport.cpp, implement the function

std::pair<Eigen::MatrixXd, Eigen::VectorXd>

upwindFD(const Eigen::VectorXd &u0, double dt, double T,

const std::function<double(double)>& a,

const std::pair<double, double> &domain);

that computes the approximate solution to (1) using the forward Euler scheme for time discretiza-
tion and upwind finite differences for space discretization. The arguments of the function upwindFD

are specified in the template file. The input argument N denotes the number of grid points including
the boundary points, i.e. x[0] = xL, x[N-1] = xR. Take xl = 0, xr = 5.

No restriction is imposed on the sign of velocity function a; your code must be able to handle
positive and negative values.

Assume again outflow boundary conditions.

2



1e)

Run the function main contained in the file linear transport.cpp. As input parameters, set: T = 2,
N = 101, ∆t = 0.002 and a(x) = 2 + sin(2πx). The initial condition has been set to

u0(x) =

{
0 if x < 0.25 or x > 0.75

2 if 0.25 ≤ x ≤ 0.75.

Use the file sol movie.m/.py to observe movies of the solutions obtained using upwind finite
differences, and centered differences. Repeat the same using now a velocity with changing signs,
a(x) = sin(2πx). Answer the following questions:

• The solutions obtained with which finite difference schemes make sense?

• Based on physical considerations, explain the reason why some schemes fail to give a mean-
ingful solution.

• For the schemes that work, what happens to the energy of the system?

1f)

Run the function main contained in the file linear transport.cpp using ∆t = 0.002, ∆t = 0.01, ∆t =
0.015 and ∆t = 0.05, and the other parameters as in the previous subtask (with a = sin(2πx)).
Running the routine sol movie.m, observe the results that you obtain in the four cases when using
the upwind finite difference scheme. You can see that in some cases the solution is meaningful,
while in the others the energy explodes and the solution is unphysical. Why does this happen?
Which condition should the time step ∆t fulfill in order to have stability?

1g)

We want to extend equation 1 to include an additional source term f :

∂u

∂t
(x, t) + a(x)

∂u

∂x
(x, t) = f(x, t), (x, t) ∈ (xl, xr)× R, (3)

u(x, 0) = u0(x), x ∈ [xl, xr], (4)

f : (xl, xr)×R→ R represents a known source (or sink) of u. Characteristic curves are still defined
as the curves which verify the ODE x′(t) = a(x(t), t).

Is the solution to eq. 3 constant along characteristic curves?

3



Exercise 2 Linear Finite Elements for the Poisson equation
in 2D

We consider the problem

−∆u = f(x) in Ω ⊂ R2 (5)

u(x) = 0 on ∂Ω (6)

where f ∈ L2(Ω).

Hint: This exercise has unit tests which can be used to test your solution. To run the unit tests,
run the executable unittest. Note that correct unit tests are not a guarantee for a correct solution.
In some rare cases, the solution can be correct even though the unit tests do not pass (always check
the output values, and if in doubt, ask the teaching assistant!)

2a)

Write the variational formulation for (5)-(6).

We solve (5)-(6) by means of linear finite elements on triangular meshes of Ω. Let us denote by
ϕN
i , i = 0, . . . , N − 1 the finite element basis functions (hat functions) associated to the vertices of

a given mesh, with N = NV the total number of vertices. The finite element solution uN to (5) can
thus be expressed as

uN (x) =

N−1∑
i=0

µiϕ
N
i (x), (7)

where µ = {µi}N−1i=0 is the vector of coefficients. Notice that we don’t know µi if i is an interior
vertex, but we know that µi = 0 if i is a vertex on the boundary ∂Ω.

Hint: Here and in the following, we use zero-based indices in contrast to the lecture notes.

Inserting ϕN
i , i = 0, . . . , N −1 as test functions in the variational formulation from subproblem 2a)

we obtain the linear system of equations

Aµ = F, (8)

with A ∈ RN×N and F ∈ RN .

2b)

Write an expression for the entries of A and F in (8).

4



2c)

Complete the template file shape.hpp implementing the function

inline double lambda(int i, double x, double y)

which computes the the value a local shape function λi(x), with i that can assume the values 0, 1
or 2, on the reference element depicted in Fig. 1 at the point x = (x, y).

The convention for the local numbering of the shape functions is that λi(xj) = δi,j , i, j = 0, 1, 2,
with δi,j denoting the Kronecker delta.

Hint: You can test your code by running the unit tests (./unittest/unittest from the command
line). The relevant unit tests are those marked as TestShapeFunction.

1

1

K̂

0
• •

•

0 1

2

x

y

Figure 1: Reference element K̂ for 2D linear finite elements.

2d)

Complete the template file grad_shape.hpp implementing the function

inline Eigen::Vector2d gradientLambda(const int i, double x, double y)

which returns the value of the derivatives (i.e. the gradient) of a local shape functions λi(x), with
i that can assume the values 0, 1 or 2, on the reference element depicted in Fig. 1 at the point
x = (x, y).Hint: You can test your code by running the unit tests (./unittest/unittest from
the command line). The relevant unit tests are those marked as TestGradientShapeFunction.

5



The routine makeCoordinateTransform contained in the file coordinate_transform.hpp computes the
Jacobian matrix of the linear map Φl : R2 → R2 such that

Φl

(
1
0

)
=

(
a11
a12

)
= a1, Φl

(
0
1

)
=

(
a21
a22

)
= a2,

where a1,a2 ∈ R2 are the two input arguments.

2e)

Complete the template file stiffness_matrix.hpp implementing the routine

template<class MatrixType, class Point>

void computeStiffnessMatrix(MatrixType& stiffnessMatrix, const Point& a, const Point& b,

const Point& c)

that returns the element stiffness matrix for the bilinear form associated to (5) and for the triangle
with vertices a, b and c.

Hint: Use the routine gradientLambda from subproblem 2d) to compute the gradients and the
routine makeCoordinateTransform to transform the gradients and to obtain the area of a triangle.

Hint: You do not have to analytically compute the integrals for the product of basis functions;
instead, you can use the provided function integrate. It takes a function f(x, y) as a parameter,
and it returns the value of

∫
K
f(x, y)dV , where K is the triangle with vertices in (0, 0), (1, 0) and

(0, 1). Do not forget to take into account the proper coordinate transforms!

Hint: You will need to give a parameter f to integrate representing the function to be integrated.
You can define your own routine for that, or you can use an “anonymous function” (or “lambda
expression”), e.g.:

auto f = [&](double x, double y){ return /*something depending on (x,y), i, j...*/};

which produces a function pointer in object f (that one can call as a normal function).

Hint: You can test your code by running the unit tests (./unittest/unittest from the command
line). The relevant unit tests are those marked as TestStiffnessMatrix.

The routine integrate in the file integrate.hpp uses a quadrature rule to compute the approximate
value of

∫
K̂
f(x̂) dx̂, where f is a function, passed as input argument.

2f)

Complete the template file load_vector.hpp implementing the routine

6



template<class Vector, class Point>

void computeLoadVector(Vector& loadVector, const Point& a, const Point& b,

const Point& c, const std::function<double(double, double)>& f)

that returns the element load vector for the linear form associated to (5), for the triangle with
vertices a, b and c, and where f is a function handler to the right-hand side of (5).

Hint: Use the routine lambda from subproblem 2c) to compute values of the shape functions on
the reference element, and the routines makeCoordinateTransform and integrate from the handout
to map the points to the physical triangle and to compute the integrals.

Hint: You can test your code by running the unit tests (./unittest/unittest from the command
line). The relevant unit tests are those marked as TestElementVector.

2g)

Complete the template file stiffness_matrix_assembly.hpp implementing the routine

template<class Matrix>

void assembleStiffnessMatrix(Matrix& A, const Eigen::MatrixXd& vertices,

const Eigen::MatrixXi& triangles)

to compute the finite element matrix A as in (8). The input argument vertices is a NV × 2 matrix
of which the i-th row contains the coordinates of the i-th mesh vertex, i = 0, . . . , NV − 1, with NV

the number of vertices. The input argument triangles is a NT ×3 matrix where the i-th row contains
the indices of the vertices of the i-th triangle, i = 0, . . . , NT − 1, with NT the number of triangles
in the mesh.

Hint: Use the routine computeStiffnessMatrix from subproblem 2e) to compute the local stiffness
matrix associated to each element.

Hint: Use the sparse format to store the matrix A.

Hint: You can test your code by running the unit tests (./unittest/unittest from the command
line). The relevant unit tests are those marked as TestAssembleStiffnessMatrix.

2h)

Complete the template file load_vector_assembly.hpp implementing the routine

void assembleLoadVector(Eigen::VectorXd& F, const Eigen::MatrixXd& vertices,

const Eigen::MatrixXi& triangles,

const std::function<double(double, double)>& f)

to compute the right-hand side vector F as in (8). The input arguments vertices and triangles are as
in subproblem 2g), and f is an in subproblem 2f).

7



Hint: Proceed in a similar way as for assembleStiffnessMatrix and use the routine computeLoadVector

from subproblem 2f).

Hint: You can test your code by running the unit tests (./unittest/unittest from the command
line). The relevant unit tests are those marked as TestAssembleLoadVector.

The routine

void setDirichletBoundary(Eigen::VectorXd& u, Eigen::VectorXi& interiorVertexIndices,

const Eigen::MatrixXd& vertices,

const Eigen::MatrixXi& triangles,

const std::function<double(double, double)>& g)

implemented in the file dirichlet_boundary.hpp provided in the handout does the following:

• it gets in input the matrices vertices and triangles as defined in subproblem 2g) and the function
handle g to the boundary data, i.e. to g such that u = g on ∂Ω (in our case g ≡ 0);

• it returns in the vector interiorVertexIndices the indices of the interior vertices, that is of the
vertices that are not on the boundary ∂Ω;

• if xi is a vertex on the boundary, then it sets u(i)=g(xi), that is, in our case, it sets to 0 the
entries of the vector u corresponding to vertices on the boundary.

2i)

Complete the template file fem_solve.hpp with the implementation of the function

int solveFiniteElement(Vector& u, const Eigen::MatrixXd& vertices,

const Eigen::MatrixXi& triangles,

const std::function<double(double, double)>& f)

This function takes in input the matrices vertices, triangles as defined in the previous subproblems,
and the function handle f to the right-hand side f in (5). The output argument u has to contain,
at the end of the function, the finite element solution uN to (5).

Hint: Use the routines assembleStiffnessMatrix and assembleLoadVector from subproblems 2g) and
2h), respectively, to obtain the matrix A and the vector F as in (8), and then use the provided
routine setDirichletBoundary to set the boundary values of u to zero and to select the free degrees of
freedom.

Hint: You will need to give a parameter g to setDirichletBoundary representing the boundary
condition. In our case, this is an identically zero function. You could define your own routine for
that, or you can use an “anonymous function” (or “lambda expression”), e.g.:

auto zerobc = [](double x, double y){ return 0;};

which produces a function pointer in object zerobc (that one can call as a normal function).

8



2j)

Run the code in the file fem2d.cpp to compute the finite element solution to (5), with a forcing term
given by f(x) = 2π2 sin(πx) sin(πy). Do this for the two domains provided: the square domain Ω =
[0, 1]2 contained in mesh files data/square_n.mesh and the L-shaped Ω in data/Lshape_n.mesh.
You can do this from your build folder with calls:

./fem2d square_4 or ./fem2d Lshape_4

where the number n (in {0, 1, . . . , 7}) denotes the number of refinements in the mesh; higher numbers
represent finer meshes. Use then the routine plot on mesh.py to produce a plot of the solution. From
your build folder, you could do this as e.g.

python ../plot_on_mesh.py square_4

2k)

Advanced CS. Update the build system, i.e. CMakeLists.txt to Modern CMake. You may use the
CMakeLists.txt as an example. You can find further reading here:

• https://cliutils.gitlab.io/modern-cmake/

• https://www.youtube.com/watch?v=y7ndUhdQuU8

9


