
Series 1

Advanced Numerical Methods for
CSE
Last edited: October 25, 2019
Due date: November 1, 2019

Template codes are available on the course’s webpage at https://metaphor.ethz.ch/x/2019/hs/
401-4671-00L/.

Exercise 1 Linear advection equation

Consider the one-dimensional linear advection equation with variable coefficients{
∂tu(x, t) + a(x)∂xu(x, t) = 0 for (x, t) ∈ R× [0,∞)

u(x, 0) = u0(x) for x ∈ R (1)

where u0 : R→ R is a given function. Let a : R→ R be given by

a(x) =


0, if x ≤ 0,

−x, if 0 < x ≤ 1,

−1, if x > 1.

(2)

1a)

Use the method of characteristics to find the solution u(x, t), for (x, t) ∈ R× [0,∞), and a generic
initial condition u0.

1b)

Determine now the solution u(x, t) of the one-dimensional linear conservation law{
∂tu(x, t) + ∂x

(
a(x)u(x, t)

)
= 0 for (x, t) ∈ R× [0,∞)

u(x, 0) = u0(x) for x ∈ R (3)

1



for (x, t) ∈ R× [0,∞), and a generic initial condition u0.

Hint: Make use of the characteristics found in 1a).

1c)

For the two solutions computed in 1a) and 1b), respectively, what can be said about
∫
R |u(x, t)| dx

and maxx∈R |u(x, t)| as a function of time t?

1d)

Let u(x, t) be a solution of the conservation law (3), where we now consider a general coefficient
a ∈ C1. Assume that u(x, t) is C1 and that lim|x|→∞ u(x, t) = 0 for all t ≥ 0 (you may assume
u(x, t) to be well-behaved at x = ±∞ to avoid technical difficulties). Show that u(x, t) is conserved,
in the sense that

∫
R u(x, t) dx =

∫
R u0(x) dx for all t ≥ 0. Is this also true for the linear advection

equation?

2



Exercise 2 Initial value problem for Burgers’ equation

2a)

Find the unique entropy solution u : R× [0,∞)→ R, (x, t) 7→ u(x, t) of the Burgers equation

∂tu+ ∂x

(
u2

2

)
= 0, (4)

with the following initial data

u0(x) =


0, (x < −1),

1, (−1 < x < 0),

1− x, (0 < x < 1),

0, (x > 1).

(5)

3



Exercise 3 Riemann problems for nonlinear fluxes

We consider the Riemann problem for the non-linear conservation law

∂tu+ ∂xf(u) = 0. (6)

where u : R× [0,∞)→ R, (x, t) 7→ u(x, t), and initial data of the form

u0(x) =

{
uL, (x < 0),

uR, (x > 0).
(7)

For each of the following flux functions f(u) and initial data u0, determine the unique entropy
solution:

3a)

f(u) = u(1− u), u0(x) =

{
1/2, x < 0,

0, x > 0.

3b)

f(u) = u(1− u), u0(x) =

{
0, x < 0,

1/2, x > 0.

3c)

f(u) = exp(u), u0(x) =

{
0, x < 0,

1, x > 0.

3d)

f(u) = exp(−u), u0(x) =

{
1, x < 0,

0, x > 0.

4



Exercise 4 Finite Volume Method for scalar equations in 1D

In this exercise we implement finite volume methods for the one-dimensional, scalar hyperbolic
conservation law

ut + f(u)x = 0, (8)

with flux f(u) = 1
2u

2 on a uniform grid. The cell-centers are denoted by xi and the interfaces by
xi+1/2. The semi-discrete formulation of FVM is

d

dt
Ui +

1

∆x

(
Fi+1/2 − Fi−1/2

)
= 0 (9)

where Fi+1/2 is the numerical flux through the interface i+1/2 and Ui the approximate cell-average
of u. The numerical fluxes we consider are two point fluxes, given by

Fi+1/2 = F (U−i+1/2, U
+
i+1/2) (10)

with traces U±i+1/2, i.e. approximations of the value of u(xi+1/2, t) from the left and right of the

interface.

Hint: The templates are a simplified version of our research codes. Therefore please read the
README.md which comes with the code. It will walk you through the individual parts of the
exercise.

Hint: The subproblems are ordered, and it’s recommended you solve them in the stated order.

Hint: The file config.json is used to configure the simulation. The path the this file has been hard-
coded. Depending on your setup you might need to change edit src/ancse/config.cpp to used the right
path for your system. This is likely the case if you’re using VS2019. The path should be relative
to the executable.

4a)

Implement the following numerical fluxes:

• Rusanov’s

• Lax-Friedrichs

• Roe

• Godunov

• Enquist-Osher

5



Hint: The file include/ancse/numerical flux.hpp contains an example of how to implement the central
flux, called CentralFlux.

Hint: Write tests to check for the correctness of your implementation. You can find the tests in
tests/test numerical flux.cpp.

4b)

Implement piecewise linear reconstruction of the trace values U±i+1/2, with the following slope-

limiters:

• minmod

• minabs

• superbee

• monotonized central

• van Leer’s limiter

Hint: The file include/ancse/reconstruction.hpp contains an example of how to implement piecewise
constant reconstruction, called PWConstantReconstruction.

Hint: Consider implementing this using a template class which accepts the slope-limiter as a
template parameter.

Hint: Implement tests in tests/test reconstruction.cpp.

4c)

Complete the loop that applies your fluxes and numerical reconstructions in fvm rate of change.hpp.

Hint: Boundary conditions haven’t been yet implemented, but assume they are in place when
writing this class. That is, you can trust the ghost cells to contain appropriate values, and you only
need to update the central, non-ghost cells here.

4d)

Implement the second-order strong stability preserving Runge-Kutta (SSP2) scheme.

Hint: The files include/ancse/runge kutta.hpp and src/ancse/runge kutta.cpp contains an example of
how to implement forward Euler, c.f. ForwardEuler.

6



4e)

Implement periodic and outflow boundary conditions.

Hint: Please implement your boundary conditions by deriving from BoundaryCondition, found in
include/ancse/boundary condition.hpp.

4f)

Implement the CFL condition. This should be a new class that derives from CFLCondition, found
in include/ancse/cfl condition.hpp, which implements the computation of a CFL-satisfying dt for a
generic problem.

Hint: Please remember to test your implementation.

4g)

To enable selecting the different schemes at run time we need to implement factories for each
component.

Start by registering your implementation of SSP2, see src/ancse/runge kutta.cpp. Note, there is
already an example of what to do for ForwardEuler .

Next, register your two boundary conditions in src/ancse/boundary condition.cpp and the CFL condi-
tion in src/ancse/cfl condition.cpp.

Finally, the hardest part: registering the numerical flux and reconstruction. You’ll find an example
of how to do this in src/ancse/fvm rate of change.cpp.

4h)

You now have a code with which you can discover the behaviour of a large number of numerical
schemes.

Here are some ideas of what you can do:

• Observe how the numerical schemes behave on a smooth test case, e.g.

u(x, t = 0) = u0(x) = sin(2πx) (11)

on a domain D = [0, 1] with periodic boundary conditions.

7



• The Roe flux is known to produce an entropy violating shock instead of a rarefaction. You
can see this behaviour by looking at the following two step functions

u0(x) =

{
−1 x < 0.5

1 otherwise
(12)

and

u0(x) =

{
1 x < 0.5

−1 otherwise.
(13)

Use a domain D = [0, 1] and outflow boundary conditions. Choose the final time such that
the waves don’t reach the boundary.

• You can investigate which solves are stable in the presence of discontinuities. Compare differ-
ent slope-limiters. As initial condition you could again pick a step function and use outflow
boundary conditions.

• How sharp is the CFL condition?

Hint: Use piecewise linear reconstruction with minmod, Rusanov’s flux and SSP2 timestepping on
2048 cells as a reference solution.

Hint: When assessing the performance of a scheme use a moderate number of cells, in the range
of 10s to 100s.

4i)

Optional. Since you now have a 1D version of our research codes, you can do a number of other
interesting things.

• Implement the third-order strong stability preserving method. You can read up on this in the
review paper by Gottlieb, Shu and Tadmor:

https://doi.org/10.1137/S003614450036757X

Of particular interest is the introduction and Section 4 “Nonlinear SSP Runge–Kutta Meth-
ods”.

This task is not very hard and the paper contains some surprising (and depressing) results
about strong stability preserving Runge-Kutta schemes.

One natural question is: why can’t we just use standard RK methods such as the fourth-order
Runge-Kutta method?

• Implement fifth order WENO. You could read this well-written review paper by Shu:

8



https://doi.org/10.1137/070679065

Keep in mind that you are implementing a finite volume method, not a finite difference
method. In particular, pay attention to the difference of WENO interpolation and WENO
reconstruction.

Only the introduction, Section 2.1 “WENO Interpolation” and Section 2.2 “WENO recon-
struction” are needed for this task.

This task is interesting because you will learn about the difference of cell-averages and point-
values, which only becomes important at third-order. Furthermore, WENO is one of the
most powerful reconstruction schemes available; and once you have the formulae it should be
straight forward to implement it in this code.

• You could parallelize the code by using either OpenMP or MPI. Both are currently standard
ways of parallelizing numerical codes.

• Writing the output to JSON is not scalable. The two real options are HDF5 and NetCDF.
You could implement a subclass of SnapshotWriter which would use either one of these libraries
to write the output.

This task requires some substantial coding and debugging, but these libraries are currently the
two most popular ways of writing simulation output to a file. Therefore, it’s worth learning
them.

9



Exercise 5 Linear transport equation in 2D

Until now we have considered the scalar linear advection equation only in 1D, i.e. ut + aux = 0,
u(x, 0) = u0(x). In this exercise, we are going to study the natural generalization to more than one
dimension. In other words: given Ω ⊂ R2 and T > 0, we want to find u : Ω× [0, T ]→ R such that

∂tu(x, t) + a(x) · ∇xu(x, t) = 0, ∀(x, t) ∈ Ω× [0, T ] (14)

u(x, 0) = u0(x), ∀x ∈ Ω (15)

which can be written as ∂tu + a1∂xu + a2∂yu = 0, with a = (a1, a2) ∈ C1(Ω;R2) the advecting
velocity. We call ∇xu := (∂xu, ∂yu), x = (x, y), and · denotes the Euclidean scalar product.

For this problem, we take Ω = [a, b]× [c, d] 3 0, and we study the specific choice of

a(x, y) := (y,−x). (16)

This choice corresponds to the rotation of a solid around the origin.

5a)

Characteristic curves in this case are still defined as the curves γ = (γ1, γ2) : [0, T ]→ R2 such that

d

dt
γx0

(t) = a(γx0
(t)) (17)

γx0
(0) = x0. (18)

Find the explicit expression of characteristic curves for problem (14) with velocity a chosen as in
(16), and draw a sketch.

5b)

Let Cij = [xi, xi+1)× [yj , yj+1) ⊂ Ω, and let a be an arbitrary divergence free advection velocity,
i.e. ∇x · a = 0. Derive from eq. (14) the following equality:

∂t
1

|Cij |

∫
Cij

u(x, t)dx +
1

|Cij |

∫ xi+1

xi

(a2(x, yj+1)u(x, yj+1)− a2(x, yj)u(x, yj)) dx (19)

+
1

|Cij |

∫ yj+1

yj

(a1(xi+1, y)u(xi+1, y)− a1(xi, y)u(xi, y)) dy = 0 (20)

where |Cij | = (xi+1 − xi)(yj+1 − yj) is the volume of Cij .

Hint: Remember the divergence theorem (or Gauss’ theorem): if V ⊂ Rd is a compact domain
with piecewise smooth boundary, and F ∈ C1(U) for U an open set containing V , then∫

V

(∇x · F )dV =

∫
∂V

(F · ν)dS (21)

10



where ν(s) is the unit outward-pointing vector normal to ∂V at point s.

Hint: What do you know about ∇x · (ua)?

5c)

We will use (19) to implement a first-order finite volume numerical scheme for solid rotation in
two dimensions. For that, set a domain Ω = [xmin, xmax) × [ymin, ymax), and fix parameters Nx,
Ny. Let ∆x = (xmax − xmin)/Nx, ∆y = (ymax − ymin)/Ny. For i ∈ {0, . . . , Nx}, j ∈ {0, . . . , Ny},
define the Cartesian grid

xi := xmin + i∆x, yj := ymin + j∆y.

The grid is depicted in Figure 1.

x0 = xmin x1 . . . xi xi+1 . . . xNx−1 xNx = xmax

y0 = ymin

y1

...

yj

yj+1

...

yNy−1

yNy
= ymax

ūij

Cij

Fi+ 1
2 ,j

Fi− 1
2 ,j

Fi,j+ 1
2

Fi,j− 1
2

ū00

C00

ūNx−1,0

CNx−1,0

ū0,Ny−1

C0,Ny−1

Figure 1: The Cartesian grid.

In file linear_transport.cpp, complete function applyBoundaryConditions, that fills the first
and last row and column of an (Nx+2) x (Ny+2) matrix with the appropriate values so that peri-
odic boundary conditions are used.

11



5d)

We want to solve problem (14)-(15), with Ω = [−1, 1]2, T = 2, and

u0(x) := χ[−0.3,0.3]2 =

{
1 if x ∈ [−0.3, 0.3]2

0 otherwise

Write an initialization loop for variable u in main.cpp using provided function ic.

Hint: You can use point evaluations U0
i,j := u0(xi + 1

2∆x, yj + 1
2∆y) rather than compute cell

averages. Why is this OK? Would it be an acceptable strategy for a higher-order scheme?

Hint: You may find useful the attached script plot_init.py, which plots the initial condition.

5e)

To conclude the implementation, we need to code a discretization of (19)-(20), which depends on
several non-trivial integrals at the boundary. For that, use the following (at least) first-order
accurate estimates:

•
∫ b

a
f(x)dx ≈ (b− a)f

(
a+b

2

)
(midpoint quadrature rule)

• For all (x, y) ∈ Cij , u(x, y) ≈ ūij (follows from 2D midpoint quadrature rule)

• Remember to apply an upwind criterion to choose an approximation of u at cell interfaces!

Using the above approximations, find numerical fluxes Fi,j+ 1
2
, Fi,j− 1

2
, Fi+ 1

2 ,j
, Fi− 1

2 ,j
where e.g.

Fi,j+ 1
2
≈
∫ xi+1

xi

a2(x, yj+1)u(x, yj+1)dx,

and use them to implement function updateUpwind, which takes the value of the solution at time-
step tn (as u_old) and updates u with the values at time tn+1.

Finish your implementation by calling your function in the main loop of the program.

Remark: as a CFL condition, we can use the following (sub-optimal) generalization 1 of 1D CFL:∣∣∣∣∆t

∆x
max
x∈Ω

a1(x)

∣∣∣∣+

∣∣∣∣∆t∆y
max
x∈Ω

a2(x)

∣∣∣∣ ≤ 1

1A derivation of this expression, together with a less restrictive alternative, can be found e.g. in R. Leveque’s
Finite Volume Methods for Hyperbolic Problems, chapter 20.

12



Remark: You can modify the parameters of the simulation in file config.json. What happens
with the result of the simulation as you increase the number of points? How does the runtime of
the program scale?

Remark: Note that the path to config.json has been hard-coded. You might need to adjust this
for you setup, e.g. if you’re using VS2019.

Remark: You can generate an animation of your solution with the provided Python script
sol_movie.py.

13


