
Series 2

Advanced Numerical Methods for
CSE
Last edited: November 21, 2019
Due date: December 8, 2019

Template codes are available on the course’s webpage at https://metaphor.ethz.ch/x/2019/hs/
401-4671-00L/.

IMPORTANT INFORMATION

In order to take the exam for the course, you must submit a solution to this exer-
cise sheet. After the deadline, a mandatory code review will take place, in which you will
individually discuss your solution with one of the assistants. Details will follow.

To take the final exam, a partial solution to the exercise sheet is enough – a complete solution
to at least one of the exercises, which doesn’t need to be perfect, suffices. This interview is not an
exam; you will not be assigned a numerical grade. The purpose of the interview is to ensure that
you’ve either solved the exercise yourself, or solved it in a small group and you are familiar with
every aspect of the code.

A bonus of +0.25 to your exam grade will be awarded for handing in and defending either a
complete, but not necessarily perfect, solution to both exercises; or a complete, correct solution to
one.

Theory questions (2a-2d) will not be discussed, although they will be necessary to solve the exercise.

1

Exercise 1 Finite volume and discontinuous Galerkin meth-
ods for Euler equations in 1D

Euler equations in 1D are written as:

ut+ f(u)x = 0, (1a)

u =

 ρ
ρv
E

 , f(u) =

 ρv
ρv2 + p

(E + p)v

 , (1b)

where the density ρ, velocity v and energy E are unknown, and the pressure p is determined by
the equation of state:

E =
p

γ − 1
+

1

2
ρv2, for γ = 7/5 = 1.4. (2)

Additionally, the speed of sound c and enthalpy H are given by:

c =

√
γp

ρ
, H =

E + p

ρ
. (3)

In this exercise, we implement finite volume and discontinuous Galerkin methods for the 1D Euler
equations (1) on a domain Ω discretized by a uniform grid Th, with the cell-centers denoted by xi,
the interfaces denoted by xi+1/2 and the cell size h.

Hint: Please read the README.md which comes with the code. It will briefly walk you through
the individual parts of the exercise.

Hint: The subproblems are ordered, and it is recommended that you solve them in the stated
order.

Hint: The file config.json is used to configure the simulation. The path the this file has been hard-
coded. Depending on your setup you might need to change edit src/ancse/config.cpp to used the right
path for your system. This is likely the case if you’re using VS2019. The path should be relative
to the executable.

Hint: You can also create new config, e.g. filename.json, and run with this configuration as

./fvm euler path relative to exec/filename.json

Hint: If you run into compilation issues due to library filesystem missing in snapshot writer.cpp,
your compiler is very likely not fully-C++17 complying; updating it should fix the issue.

Finite volume method

The semi-discrete formulation of FVM is

d

dt
Ui +

1

∆x

(
Fi+1/2 − Fi−1/2

)
= 0 (4)

2

where Ui is the approximate cell-average of u in cell i and Fi+1/2 is the numerical flux through the
interface i+ 1/2. We consider two-point numerical fluxes given by

Fi+1/2 = F(U−i+1/2,U
+
i+1/2), (5)

where the traces U−i+1/2, U+
i+1/2 are approximate values of u(xi+1/2, t) to the left and to the right

of the interface, respectively.

1a)

Templates: include/ancse/model.hpp, src/ancse/model.cpp.

Implement the Euler equations model.

Hint: The class Burgers is given as an example for the Burgers’ equation. You can add additional
routines to the interfacing class Model, if needed.

Hint: Write tests to check the accuracy of the Euler equations model in tests/test model.cpp

1b)

Templates: include/ancse/limiters.hpp, include/ancse/numerical flux.hpp

Implement the following numerical fluxes:

• Rusanov’s

• Lax-Friedrichs

• Roe

• HLL

• HLLC

Hint: The class CentralFlux is given as an example for implementing the central flux.

Hint: Implement tests in tests/test numerical flux.cpp.

1c)

Template: include/ancse/reconstruction.hpp

Implement piecewise linear reconstruction of the trace values U±i+1/2 based on

3

• conservative variables ucons = (ρ, ρv,E)

• primitive variables uprim = (ρ, v, p)

with the following slope-limiters:

• minmod

• superbee

• monotonized central

Hint: The class PWConstantReconstruction is given as an example for implementing piecewise con-
stant reconstruction.

Hint: Consider implementing this using a template class which accepts the slope-limiter as a
template parameter.

Hint: Implement tests in tests/test reconstruction.cpp.

1d)

Template: include/ancse/fvm rate of change.hpp

Complete the loop that applies your fluxes and numerical reconstructions.

1e)

Templates: include/ancse/runge kutta.hpp, src/ancse/runge kutta.cpp

Implement the second-order strong stability preserving Runge-Kutta (SSP2) scheme.

Hint: The class ForwardEuler is given as example for implementing forward Euler.

1f)

Templates: include/ancse/cfl condition.hpp, src/ancse/cfl condition.cpp

Implement the CFL condition. This should be a new class that derives from CFLCondition, which
implements the computation of a CFL-satisfying dt for a generic problem.

Hint: Implement tests in tests/test cfl condition.cpp.

4

1g)

To enable selecting the different schemes at run time we need to implement factories for each
component.

Start by registering your implementation of Euler equations model, see src/ancse/model.cpp.

Next, register the numerical flux and reconstruction. You’ll find an example of how to do this in
src/ancse/fvm rate of change.cpp.

Finally, register your implementation of SSP2, see src/ancse/runge kutta.cpp. Note, follow the exam-
ple of how it is done for ForwardEuler.

1h)

You can try the following with your FVM code:

• Consider Sod’s shock tube problem on a domain Ω := (0, 1) with outflow boundary conditions
and initial discontinuity at x = 0.5. The initial states to the left and to the right of the
discontinuous interface areρLvL

pL

 =

1
0
1

 ,

ρRvR
pR

 =

0.125
0

0.1

 . (6)

For details about this experiment, you can read:

– G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws, J. Comput. Phys., 27 (1978), pp. 1–31.
URL: https://www.archives-ouvertes.fr/hal-01635155/document

– Section 14.13 of Finite Volume Methods for Hyperbolic problems, R. LeVeque, 2002.
You can find this book through the course web page for AdvNumCSE.

Study the performance of the different numerical schemes for this experiment.

Is the piecewise linear reconstruction based on conservative variables better than the one
based on primitive variables?

• Consider a “vacuum” problem on a domain Ω := (0, 1) with outflow boundary conditions
and initial discontinuity at x = 0.5. The initial states to the left and to the right of the
discontinuous interface are ρLvL

pL

 =

 1
−2
1

 ,

ρRvR
pR

 =

 1
+2
1

 . (7)

Does the numerical scheme with Roe’s numerical flux work for this experiment?

5

Hint: When assessing the performance of a scheme, use a moderate number of cells, in the range
of 10s to 100s.

Hint: Use piecewise linear reconstruction with minmod limiter, Rusanov’s flux and SSP2 time-
stepping on 2048 cells as the reference solution.

Discontinuous Galerkin method

Let Pp be the space of the polynomials with maximum degree p. Define a scalar piecewise polynomial
space

W p
h := {w ∈ L2(Ω) : w|K ∈ Pp(K), K ∈ Th}. (8)

This means that a function w ∈ W p
h is a polynomial in the cells and it is discontinuous across cell

interfaces.

We can build a orthonormal basis for W p
h using Legendre polynomials, which are given below on

the domain [−1, 1] for p = 2:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1).

The Legendre polynomials are orthogonal:∫ +1

−1

Pk Pl dx =
2

2k + 1
δkl,

where δkl = 1, if k = l, and δkl = 0, if k 6= l. Transform Pk to the domain [0, 1] and define the
normalized functions

φk(x) :=
√

2k + 1 Pk(2x− 1) χ[0,1](x), such that

∫ +1

0

φk φl dx = δkl.

Here χ[0,1](x) = 1, if x ∈ [0, 1] and χ[0,1](x) = 0, otherwise.

Given N grid cells, uniformly spaced with xi+1/2 − xi−1/2 = h, let {ϕi,j} denote the basis of W p
h ,

i.e. a function w ∈W p
h can be written as

w(x) =

N∑
i=0

p∑
j=0

wi,j ϕi,j(x),

where we define the function

ϕi,j(x) :=
1√
h
φj

(
x− xi−1/2

h

)
. (9)

Note, ϕi,j(x) = 0, if x /∈ (xi−1/2, xi+1/2), i.e. the function ϕi,j has local support on (xi−1/2, xi+1/2).

For a given m ∈ N, we can easily define a vector piecewise polynomial space

Wp
h := [W p

h]m, (10)

6

i.e. for a vector function w ∈ Wp
h, its components wl ∈ W p

h for l = 1, . . . ,m. For 1D Euler
equations m = 3.

We seek a solution of the form

uh(x, t) =

N∑
i=0

p∑
j=0

Ui,j(t) ϕi,j(x),

with Ui,j : R → Rm the coefficient of ϕi,j in the expansion of uh(·, t). Note that, for fixed t ≥ 0,

uh(·, t) can be uniquely identified with a vector (Ui,j,l)
l=m,j=p,i=N
l=1,j=0,i=1 of coefficients in Rm(p+1)N .

To derive the DG formulation for the Euler equations (1), we take its inner product with a test
function wh ∈Wp

h, integrate over an arbitrary cell Ki := (xi−1/2, xi+1/2) ∈ Th and use integration
by parts:∫

Ki

(uh)t ·wh dx+

∫
Ki

f(uh)x ·wh dx = 0

d

dt

(∫
Ki

uh ·wh dx

)
+ (f(u) ·wh)

∣∣
x−
i+1/2

− (f(u) ·wh)
∣∣
x+
i−1/2

−
∫
Ki

f(uh) · (wh)x dx = 0.

Here uh ∈Wp
h is the approximate solution and the flux through the interface i+ 1/2, f(u(xi+ 1

2
)),

can be approximated with a numerical flux F by

f(u(xi+ 1
2
)) ≈ f̂i+1/2 := F

(
uh(x−i+1/2),uh(x+

i+1/2)
)
. (11)

The semi-discrete formulation of the DG method is

d

dt

(∫
Ki

uh ·wh dx

)
= f̂i−1/2 ·wh|x+

i−1/2
− f̂i+1/2 ·wh|x−

i+1/2
+

∫
Ki

f(uh) · (wh)x dx. (12)

Remark: If W0 is used, i.e. the space of piecewise constant functions, the volume integral on the
right-hand side in (12) vanishes as (wh)x = 0, and dividing by the cell size h we re-obtain the FVM
semi-discrete formulation (4).

Remark: By construction of the DG method, it is easy to evaluate the values of u to the left and
to the right of cell interfaces for computing numerical fluxes. No reconstruction is needed!

Remark: For p ≥ 1, we need to limit the DG solution coefficients corresponding to polynomials
of degree greater than equal to 1. However, one can separate the evolution step and the limiting
procedure. For example - if we use forward Euler time integrator to solve (12), then first we will
evolve the solution coefficients from tn to tn+1 and then perform the limiting.

Remark: Since uh(·, t) ∈Wp
h, we have∫

Ki

uh(·, t) ·wh dx =

∫
Ki

p∑
k=0

Ui,k(t)ϕi,k ·wh dx.

7

Due to orthonormality of the basis polynomials, taking wh := ϕi,jel, with el ∈ Rm the unit vector
with (el)l̃ = δll̃, we obtain ∫

Ki

uh ·wh dx =

p∑
k=0

Ui,k,l(t) δjk = Ui,j,l(t)

Remark: For implementation, we re-arrange the vector of coefficients (Ui,j,l)
l=m,j=p,i=N
l=1,j=0,i=1 ∈ Rm(p+1)N

into a matrix U ∈ Rm(p+1)×N of m(p+ 1) rows and N columns, with entries

Ui, j+(p+1)l := Ui+1,j,l+1, for j = 0, . . . , p, l = 0, . . . ,m− 1, i = 0, . . . , N − 1.

This particular arrangement is used in the initialization step, which has already been provided, of
the DG solver.

1i)

Template: src/ancse/polynomial basis.cpp.

Implement the basis functions φk, with maximum degree 2, as described above.

PolynomialBasis::operator() takes as input one point ξ ∈ [0, 1], and return a vector of p + 1
components containing {φk(ξ)}pk=0, scaled by an appropriate scaling factor, which you can assume
is already contained in PolynomialBasis::scaling_factor.

Do the same in function PolynomialBasis::deriv for the spatial derivatives ∂ξφk(ξ).

1j)

Template: src/ancse/dg handler.cpp.

Implement the function build sol, which builds the solution at a given point in a specified cell.

That is, DGHandler::build_sol receives the vector of coefficients Ui,· ∈ Rm(p+1) of the approximate
solution uh in cell Ki, and a point x in the cell Ki, and returns uh(x) =

∑p
k=0 Ui,kϕi,k(x). Note,

the physical point x should be converted to the corresponding reference point ξ ∈ [0, 1], because
ϕi,k(x) is computed through φk using equation 9.

Implement the function build cell avg, which builds the cell averages in the given cells.

That is, DGHandler::build_cell_avg produces a matrix ūh ∈ Rm×N , where

(ūh)l,i =
1

h

∫
Ki

(uh)l(x) dx,

where (uh)l refers to the l-th component of uh.

8

Hint: What relationship is there between 1
h

∫
Ki

(uh)l(x) dx and the coefficient corresponding to

ϕi,0 in uh
∣∣
Ki

?

1k)

Templates: include/ancse/cfl condition.hpp, src/ancse/cfl condition.cpp

Implement the CFL condition using the cell averages ūh ∈ Rm×N . This should be a new class that
derives from CFLCondition, which implements the computation of a CFL-satisfying dt for a generic
problem.

Hint: Implement tests in tests/test cfl condition.cpp.

1l)

Template: src/ancse/dg rate of change.cpp.

Implement the functions eval numerical flux and eval volume integral, which compute the numerical
flux term and volume integral on the right-hand side in the formulation (12), respectively.

Register numerical fluxes in make dg rate of change, as you have already done for FVM.

Hint: You can test your implementation without any limiting for p = 0 with forward Euler, it
should give the same results as the first-order FVM.

DG Limiting

Without delving into too many details, we will provide a recipe to do limiting for the scalar case,
which can then be applied component-wise for systems:

Define

ūi,0 := ui,0 ϕi,0, (13a)

ū−i := +

p∑
j=1

ui,j ϕi,j(x
−
i+1/2), ū+

i := −
p∑
j=1

ui,j ϕi,j(x
+
i−1/2). (13b)

This implies

uh(x−i+1/2) = ūi,0 + ū−i ,

uh(x+
i−1/2) = ūi,0 − ū+

i .

Additionally, define

∆+ūi,0 := ūi+1,0 − ūi,0, ∆−ūi,0 := ūi,0 − ūi−1,0. (14)

9

Using the so-called van Leer limiter:

˜̄u−i := g(ū−i ,∆−ūi,0,∆+ūi,0), ˜̄u+
i := g(ū+

i ,∆−ūi,0,∆+ūi,0), (15)

with the minmod function

g(a1, . . . , an) :=

{
smin1≤l≤n |ai|, s = sgn(a1) = . . . = sgn(an),

0, otherwise.
(16)

Finally, we recompute the coefficients post limiting ũi,j from ˜̄u−i and ˜̄u+
i . You can easily check that

ũi,j can be uniquely determined for p = 1, 2.

1m)

Template: src/ancse/dg handler.cpp.

Implement the function build split sol, which returns ūi,0, ū+
i and ū−i , c.f. (13).

Implement the function build limit coeffs, which computes the coefficients Ũi,j after limiting.

1n)

Template: src/ancse/dg limiting.cpp.

Implement the DG limiting procedure for the conserved variables.

Hint: You should test your implementation of DG limiting with Burgers’ equation. Run two
Riemann problems, one that leads to a shock and another that leads to a rarefaction.

Repeat the Sod shock tube test described previously with your DG code.

10

Exercise 2 Solving the compressible Euler equations on an
unstructured mesh for computing flow past an
airfoil

In this exercise, you will simulate the steady state airflow over a NACA airfoil. The simulation
requires you to solve the Euler equations in two dimensions numerically on an unstructured grid.

Hint: Please read README.md carefully as it contains a lot of important information about the
code.

We start with the following definitions:

• t ∈ R+ is the time,

• x ∈ R2 is the (Eulerian) position,

• u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 is the velocity at (x, t),

• ρ(x, t) ∈ R+ is the density at at (x, t),

• p(x, t) ∈ R is the pressure at (x, t),

• E(x, t) ∈ R is the total energy at (x, t).

The Euler equations are then given as:

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u + pI) = 0

Et +∇ · ((E + p)u) = 0.

(17)

Here

u⊗ u :=

(
u1u1 u1u2

u2u1 u2u2

)

The total energy of the system is given by

E =
1

2
ρu · u + ρe.

For the rest of this exercise, we assume that the internal energy e is given as

e =
p

γ − 1
,

11

where γ is the adiabatic constant. We set

γ = 1.4.

To make notation easier, we will consider the general form of (17) given as

Ut +∇x · F(U) = 0 (18)

where U : Rd × R+ → RN is the vector of conserved variables, and F : RN → RN×d is the flux
tensor. We set

∇x · F(U(x, t)) :=


∂
∂x1

F1,1(U(x, t)) + . . .+ ∂
∂xd

F1,d(U(x, t))
∂
∂x1

F2,1(U(x, t)) + . . .+ ∂
∂xd

F2,d(U(x, t))
...

∂
∂x1

FN,1(U(x, t)) + . . .+ ∂
∂xd

FN,d(U(x, t))

 ,

where

F(U) =

F1(U)
...

FN (U)

 =

F1,1(U) F1,2(U) · · · F1,d(U)
...

...
...

...
FN,1(U) FN,2(U) · · · FN,d(U)

 .

In the case of two dimensional Euler, d = 2 and N = 4, and

U =


ρ
ρu1

ρu2

E

 =:


ρ
mx

my

E

 (19)

where we assume ρ > 0.

2a)

Write the compressible Euler equations (17) on the form (18). What is the flux function F for the
compressible Euler equations?

Solution: We set

F


ρ
mx

my

E

 =


mx my

mxmx

ρ + p
mxmy

ρ
mymx

ρ
mymy

ρ + p
mx(E+p)

ρ
my(E+p)

ρ

 =


mx my

ρu2
1 + p ρu1u2

ρu2u1 ρu2
2 + p

u1(E + p) u2(E + p)

 . (20)

We consider a polygonal domain Ω in R2 and assume we have a triangulation T = {Ki}Mi=1. See
Figure 1 for an illustration.

12

Figure 1: Example of our domain Ω.

2b)

Let 1 ≤ i ≤M and let U : Ω× R+ → RN , and define

Ūi(t) :=
1

|K|

∫
K

U(x, t) dx.

Furthermore, for n ∈ R2, we denote:

F(U) · n :=

F1(U) · n
...

FN (U) · n

 .

This represents the flux through a surface with normal vector n.

Given triangle Ki ∈ T , and a neighbouring triangle Kj (i.e. Ki ∩Kj is a segment), we denote their
common edge as ei,j . For a given triangle Ki, we denote its three edges as {ei,jk}3k=1, with Kjk its
three neighbours.

Remark: Technically this does not work if Ki has one edge on ∂Ω, since Kjk may not be a triangle
in T . However, in this case the notation is not useful because you do not want to treat all edges the
same because boundary conditions apply to some of the edges. Therefore, either ignore the issue
or set Kjk = Ωc (for the sole purpose of giving those edges a name).

13

Assume U is a smooth solution of (18). Fix tn,∆t ≥ 0. Show that

Ūi(t
n + ∆t)− Ūi(t

n) = − 1

|Ki|

3∑
k=1

∫ tn+∆t

tn

∫
ei,jk

F(U) · ni,jk dS dt, (21)

where {ei,jk}3k=1 are the edges of Ki, and {ni,jk}3k=1 are the outward-pointing unit vectors normal
to the triangle along edge ei,jk .

Solution: Let us start from equation (18) in Ki:

Ut +∇x · F(U) = 0 (22)

We integrate in space (for domain Ki) and in time (for t ∈ [tn, tn + ∆t]), and divide by the area of
Ki, |Ki|. Since U is smooth on Ki compact, we have integrability and thus

0 =
1

|Ki|

∫
Ki

∫ tn+∆t

tn

∂

∂t
U(x, t) dt dx +

1

|Ki|

∫
Ki

∫ tn+∆t

tn
∇x · F(U(x, t)) dt dx (23)

=
1

|Ki|

∫
Ki

(U(x, tn + ∆t)−U(x, tn)) dt dx +
1

|Ki|

∫ tn+∆t

tn

∫
Ki

∇x · F(U(x, t)) dx dt (24)

= Ūi(t
n + ∆t)− Ūi(t) +

1

|Ki|

∫ tn+∆t

tn

∫
∂Ki

F(U(x, t)) · n dS dt (25)

where in the last step, we have used the definition of Ū, Gauss’ theorem, and n is the outward-
pointing unit vector normal to ∂Ki.

We conclude by noting that, since Ki is a triangle, its boundary can be written as the union of its

three edges ∂Ki =
3⋃
k=1

ei,jk , along each of which n ≡ ni,jk . Since this union is disjoint (other than

sets of measure 0), we can conclude

0 = Ūi(t
n + ∆t)− Ūi(t) +

1

|Ki|

3∑
k=1

∫ tn+∆t

tn

∫
ei,jk

F(U) · ni,jk dS dt

2c)

Fix an edge with unit outward normal n and a transverse unit vector τ such that n · τ = 0. Verify
that

F(U) · n =


ρ(u · n)

ρ(u · n)u1 + p n1

ρ(u · n)u2 + p n2

(u · n)(E + p)

 . (26)

14

This looks remarkably similar to any one of the two components of the flux tensor. But not close
enough to allow us to use the approximate Riemann solvers we know from structured grids.

However, for a fixed edge we could choose to perform coordinate transform x 7→ (ξ, ζ) such that
x = ξn + ζτ . Define u⊥ = u · n and u‖ = u · τ , then the resulting system of PDEs is

∂tρ+ ∂ξρu⊥ + ∂ζρu‖ = 0 (27)

∂tρu⊥ + ∂ξ(ρu
2
⊥ + p) + ∂ζρu‖u⊥ = 0 (28)

∂tρu‖ + ∂ξρu⊥u‖ + ∂ζ(ρu
2
‖ + p) = 0 (29)

∂tE + ∂ξu⊥(E + p) + ∂ζu‖(E + p) = 0 (30)

Note that we choose to compute the rate of change of the density, normal component of the mo-
mentum, the transverse component of the momentum and the energy. Furthermore, note that flux
in ξ-direction is

f(U) =


ρu⊥

ρu2
⊥ + p

ρu⊥u‖
u⊥(E + p)

 . (31)

Use these ideas to approximate the contribution of edge e∫ t+∆t

t

∫
ei,j

F(U) · ni,j dS dt. (32)

to the net flux by the HLLC approximate Riemann solver known from two-dimensional FVM on
structured grids.

Remember, the approximate Riemann solver will compute the flux of momentum normal and trans-
verse to the interface. You need to convert this into the flux of momentum in x- and y-directions.

Hint: You can take a shortcut and approximate with Rusanov’s numerical flux instead.

2d)

For f : RN → RN , let {λi(f ,U)}Ni=1 be the eigenvalues of the Jacobian of f(U). Define

λmax(f ,U) := max
i
|λi(f ,U)|.

Show that for flux F(U) · n, it holds that:

λmax(F · n,U) = |u · n|+
√
γp

ρ
. (33)

15

Use this to derive the following CFL-condition:

∆t < CCFL
∆x

maxi λmax(F · n,Ui)
, (34)

for all unit-vectors n. Here ∆x is the small inradius and CCFL = 0.45.

Hint: Use the trick in subproblem 2c) to reduce the problem to computing the eigenvalues of the
Jacobian of F.,1. Which you have either seen in the lecture or you can look them up online.

2e)

Implement two types of flux boundary conditions:

1. outflow flux boundary conditions

2. reflective (or solid wall) flux boundary conditions.

Flux boundary conditions specify a flux at the boundary of the domain. Therefore, they do not
need any ghost-cells. Instead one needs to identify all interfaces at the boundary of the domain.
For these faces one must not attempt to compute the numerical flux, instead one evaluates a flux
boundary condition.

Consider edge e of triangle K. The outflow boundary conditions are given by∫ t+∆t

t

∫
e

F(U) · n dSdt = ∆t|e|F(U) · n. (35)

The reflective (or wall) flux boundary conditions are∫ t+∆t

t

∫
e

F(U) · n dSdt = ∆tF(U,U∗) (36)

where U = (ρ, ρu, E) are the cell-averages of the conserved variables in triangle K and

U∗ = (ρ, −ρ(u · n)n + ρ(u · τ)τ, E). (37)

Here F denotes the numerical flux derived in 2c).

Hint: The class Mesh has a member getBoundaryType which tells you which type of boundary
condition must be applied to a given edge.

2f)

With the result you’ve derived so far, implement first order FVM for the Euler equations on an
unstructured grid. Carefully debug your code at this stage, before going on to the second order

16

FVM. Check convergence rates using the script compute convergence.py and visualize the solution
with plot on mesh.py.

Hint: See README.md for more details.

The final step in implementing the second order FVM is to compute the trace values of U at the
interfaces.

Analogous to the REA algorithm we will compute the reconstruction of a quantity q, such as ρ, u1

or p, whose value {Qi}i is given at the cell-centers xi. We do this with:

qi(x) = Qi + (∇q(xi)) · (x− xi). (38)

There are two problems. The first one is that this corresponds to piecewise linear reconstruction
without a slope-limiter. This was not stable for 1D problems and won’t be stable in this context.
The second problem is how to compute the gradient ∇q.

2g)

Approximate the right hand side of

∇q(xi) ≈
1

|Ki|

∫
Ki

∇q dx (39)

by Gauss’ theorem (applied to the vector field qc, for certain constant c ∈ R2), and the mid-point
rule for the resulting integrals over the boundary.

Solution: Let c ∈ R2 a constant vector, and let us apply the divergence theorem to the function
G := qc:

∫
Ki

∇ ·G dx =

∫
∂Ki

G · n dS (40)

⇐⇒
∫
Ki

(∇q · c) dx =

∫
∂Ki

(c · n)q dS (41)

=

3∑
k=1

∫
ei,jk

(c · ni,jk)q dS (42)

≈
3∑
k=1

|ei,jk |(c · ni,jk)q(xi,jk) (43)

where in the last step we have used the mid-point rule for each edge ei,jk ; we denote the mid-point
of each such edge by xi,jk . We denote by |ei,jk | the length of the edge. Applying the argument
above for all c ∈ {(1, 0), (0, 1)}, we obtain (component-by-component):

17

∫
Ki

∇q dx =

3∑
k=1

|ei,jk |ni,jk q(xi,jk)

2h)

Fix i ∈ {1, . . . ,M}. For each edge ei,j of triangle Ki, shared with triangle Kj , let us denote its
mid-point by xi,j . One can compute a limited slope as follows

si,j = ξ(∇q(xi) ·∆xi,j ,∇q(xj) ·∆xi,j) (44)

with ∆xi,j = xi,j − xi and a slope limiter ξ of your choice. The reconstructed values are then

qi,j = Qi + si,j and qj,i = Qj + sj,i. (45)

Implement piecewise linear reconstruction of the primitive variables (ρ, u1, u2, p) by using the pre-
viously derived expressions.

2i)

First run a convergence test for your code. We do this by running a smooth vortex test case on a
sequence of meshes.

The numerical experiment has already been implemented in vortex.cpp.

Hint: You can find more information in README.md.

2j)

Simulate and visualize the steady state airflow over an airfoil. Try different Mach numbers and
angles of attack, by modifying the appropriate lines in naca airfoil.cpp.

Hint: You will find more information in README.md.

18

