
Series 3
Advanced Numerical Methods for
CSE
Last edited: December 18, 2019
Due date: January 13, 2019

Template codes are available on the course’s webpage at https://metaphor.ethz.ch/x/2019/hs/
401-4671-00L/.

Exercise 1 Riemann problem for the 1D Shallow Water Equa-
tions

In this exercise, we are going to find explicit, exact solutions to the Riemann Problem for the
Shallow Water Equations (SWE).

Let D ⊂ R, and fix a time horizon T > 0. The 1D SWE model the behaviour of water moving along
a channel. We assume that we can represent the velocity of the fluid as a function v : D×[0, T ]→ R;
i.e. for a surface-to-bottom section of the fluid, the velocity is assumed to be constant. This is a
reasonable approximation as long as the water column at any given point is not deep – hence the
name.

We denote by h̃ : D × [0, T ) → R the height of the water column, and m̃ := h̃ṽ the momentum of
the same. If we assume a flat channel, ∀(x, t) ∈ D × (0, T ), the equations take the form:

∂th̃(x, t) + ∂xm̃(x, t) = 0 (1)

∂tm̃(x, t) + ∂x

(
1

2
gh̃2(x, t) +

m̃2(x, t)

h̃(x, t)

)
= 0, (2)

where g is the constant acceleration of gravity. For our convenience, we make the renormalization
h := gh̃, m := gm̃, to obtain the simplified form:

∂th(x, t) + ∂xm(x, t) = 0 (3)

∂tm(x, t) + ∂x

(
1

2
h(x, t)2 +

m(x, t)2

h(x, t)

)
= 0 (4)

1



We assume throughout that
h(x, t) > 0 ∀(x, t) ∈ D × [0, T ),

since (3)-(4) are ill-defined for h = 0.

We will use the notation U : D × [0, T ]→ R2,

U :=

[
h
m

]
.

Assume that ∀t ∈ [0, T ), the solution U(·, t) is piecewise C1. Find the exact entropy solution to
initial value problem for the SWE (3)-(4) with Riemann initial data:

U(x, 0) =


UL :=

[
hL

mL

]
if x < 0

UR :=

[
hR

mR

]
if x > 0

, (5)

for
hL = 1, mL = 1,

and (hR,mR) =...

a) (4, 12), b) (2, 2−
√

3), c) (2, 2).

2



Exercise 2 Uncertainty Quantification and Machine Learn-
ing for Finite Volume systems in 1D

We return to a generic 1D system of hyperbolic conservation laws.

Let m ∈ N and a, b, T ∈ R, such that a < b and T > 0. Then consider

∂tU + ∂xF(U) = 0, ∀(x, t) ∈ [a, b]× (0, T ), (6)

where U : [a, b]× [0, T ]→ Rm and F : Rm → Rm.

To complete the Cauchy problem, we need to provide the initial condition; in this exercise, we
will work with non-deterministic initial conditions. Let (Ω,Σ,P) be a probability space. We
consider initial data of the form:

U(x, 0;ω) := U0(x;ω), ∀(x, ω) ∈ [a, b]× Ω. (7)

It should be clear that, when the initial condition is non-deterministic, one can not expect the
solution of eq. (6) to be deterministic. In other words, for a fixed ω ∈ Ω, we will obtain a solution
Uω : [a, b]× [0, T ]→ Rm, such that Uω satisfies eq. (6) with initial data Uω(x, 0) = U0(x;ω).

Now, let us consider an observable (or functional) of the form

LT (U) :=

∫ b

a

g(U(x, T )) dx,

where g : Rm → R. Many physical quantities of interest can be cast into this form. Note that for
non-deterministic initial data, the observable q := LT (Uω) is a random variable.

Remark: In this exercise, we are going to deal with Monte Carlo (MC) and multilevel Monte Carlo
(MLMC) methodology. An interesting feature of MC methods is that they are non-intrusive:
they can be used together with any approximation algorithm (say, FVM) without modifying the
underlying solver. Therefore, we encourage you to take your implementation of exercise 1 in
series 2 as a starting point for this exercise.

For those who would rather start over with this exercise, we provide some templates based on the
sample solution to exercise 2. Compared to the published solution, however, we need to make some
small changes for convenience:

• TimeLoop::operator() now returns a Eigen::MatrixXd with the final state.

• SimulationTime now has a method reset() that reinitializes the object; TimeLoop::operator()
begins by calling it.

• Fixed γ to the typical value of 1.4 in Model::Euler.

• Added the domain limits, xL and xR, to the json config file.

• Combined all models into a single fvm uq.cpp file.

• We focus on FVM for this exercise; the extension to DG is straightforward.

3



(ML)MC recap Fix some observables {Lj
T }Jj=1, J ∈ N. We would like to find statistics of the

random variable q :=
(
Lj
T (Uω)

)
∈ RJ . For simplicity of the exposition we fix J = 1 below.

Let k ∈ N ∪ {0} be the number of random parameters that the initial condition requires: k = 0 in
the case of deterministic initial data, and k > 0 otherwise1.

When k > 0, let Y : Ω→ Rk be a random variable, Y ∼ (U [0, 1])k. That is, Y has k components,
independent and identically distributed, each following a uniform distribution of values in [0,1]. By
a slight abuse of notation, we henceforth identify Y and ω, and denote ω ∼ (U [0, 1])k.

We parameterize2 our initial condition as U0(·;ω).

MC We generate samples ω1,ω2, . . . ,ωM , and denote qi := LT (Uh
ωi

), where Uh
ωi

is an approx-
imation of Uωi , computed with a mesh indexed by grid size h. We approximate the probability
distribution of q := LT (Uω) as

Law(q) ≈ 1

M

M∑
i=1

δqi ,

where δv is the Dirac delta distribution, which takes value v with probability 1. For any function
f , e.g. f ≡ id, we have E(f(q)) ≈ 1

M

∑M
i=1 f(qi).

MLMC Fix a maximum number of levels nl. For l ∈ {0, 1, . . . , nl}, let ql be random variables
which approximate q in some sense. Then, using the telescopic sum, we can write

qnl
= q0 + (q1 − q0) + (q2 − q1) + · · ·+ (qnl

− qnl−1
).

We refer to variables ql − ql−1 as increments or details.

For each level l ∈ {0, 1, . . . , nl}, fix a number of samples Ml, and a grid size hl. We generate a set

of samples {ωl
i}

l=nl,i=Ml

l=0,i=1 , and denote

ql,mi := LT (Uhl
ωm

i
).

Here the first super-index indexes the grid, and the second indexes the level for the sample; either
m = l or m = l + 1. We approximate the probability distribution of q as:

Law(q) ≈ 1

M0

M0∑
i=1

δq0,0i
+

nl∑
l=1

1

Ml

Ml∑
i=1

(
δql,li
− δql−1,l

i

)
.

For any function f , we have

E(f(q)) ≈ 1

M0

M0∑
i=1

f(q0,0i ) +

nl∑
l=1

1

Ml

Ml∑
i=1

(
f(ql,li )− f(ql−1,l

i )
)
.

1See task 1a) for examples
2If distributions other than U [0, 1] are required, the approach of inverse transform sampling can be applied

4



Important: Note that ql,li − q
l−1,l
i = LT (Uhl

ωl
i

) − LT (U
hl−1

ωl
i

); i.e., both realizations use the same

sample ωl
i, but different grid sizes hl and hl−1.

2a)

Templates: include/ancse/initial condition.hpp, src/ancse/initial condition.cpp.

We have defined a class InitCond that implements the initial conditions. This includes

• int get_num_rand_params(), which returns the number k of random parameters needed (0
for deterministic initial data).

• Eigen::MatrixXd operator()(const Grid &grid, std::vector<double> omega), which
evaluates the initial condition given by a vector omega of random parameters ω ∼ (U [0, 1])k

on grid grid.

You can follow as an example the class SodShockTubeShifted, which implements the following initial
condition, with k = 1 random parameter:

U0(x) :=

{
UL if x < εG(ω)

UR if x > εG(ω)
, UL :=

ρLvL
pL

 =

1
0
1

 , UR :=

ρRvR
pR

 =

0.125
0

0.1

 , (8)

with ε = 0.1 and G(y) = 2y−1. That is, the initial shock location follows a U [−0.1, 0.1] distribution.

Implement the following non-deterministic version3 of the Sod shock tube, with 6 random param-
eters:

U0(x) :=

{
UL if x < εG(ω1)

UR if x > εG(ω1)
, (9)

UL :=

ρLvL
pL

 =

1 + εG(ω2)
ε2G(ω4)

1 + εG(ω5)

 , UR :=

ρRvR
pR

 =

0.125(1 + εG(ω3))
ε2G(ω4)

0.1(1 + εG(ω6))

 , (10)

where ε = 0.1, G(y) = 2y − 1, and the random parameters ωi ∼ U [0, 1] are independent, for
i = 1, 2, . . . , 6. Note the sub-indices carefully, especially for vL and vR.

Register your implementation in initial condition.cpp.

2b)

Templates: include/ancse/functional.hpp, src/ancse/functional.cpp.

3K. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid dynamics

5



Implement the computation of some observables in order to study their statistics; for example, the
mean density ρ̄ and the total energy Etotal, where

ρ̄ :=
1

b− a

∫ b

a

ρ(x, T ) dx, Etotal :=

∫ b

a

E(x, T ) dx.

Additionally, implement the functionals

Ll,r
T (U) :=

1

r − l

∫ r

l

ρ(x, T ) dx, for (l, r) ∈ {(−1.5,−0.5), (0.8, 1.8), (2, 3)}

Register your implementation in functional.cpp.

2c)

Templates: include/ancse/statistics.hpp, src/ancse/statistics.cpp.

Implement a class Statistics to keep track of the desired statistics of any observable. Its internal
data-structures and output are up to you, but it should implement the following functions:

• add coarse statistics(Eigen::MatrixXd coarse): receives a matrix in RJ×M (i.e. n_functionals
rows and n_samples columns) of realizations qj,i := Lj(u(·, T ;ωi)) coming from a MC simu-
lation, and stores the desired information.

• add detail statistics(Eigen::MatrixXd fine, Eigen::MatrixXd coarse, int lvl): re-
ceives the matrices of realizations as above of (ql,li )j (fine) and (ql−1,l

i )j (coarse), correspond-
ing to the level lvl of a MLMC simulation, and stores the desired information.

• output statistics(): uses the stored values to output some statistics of the approximation
of the random variable q. These should include at least:

– mean E(q),

– Var(q),

– Var(ql − ql−1), for all l > 1 (MLMC only).

Hint: Recall that Var(q) = E(q2) − E(q)2, so keeping track of statistics for q2 would be useful.
Hint: Functionals will be read from field functionals in config.json, which should contain a
comma-separated list of names, instead of a single name.

2d)

Template: src/fvm uq.cpp.

6



Note the function generate omegas(nparams), which generates a vector with a realization of k
independent U [0, 1] variables, and generate_all_omegas(nsamples, nparams), which generates
a vector of nsamples of such vectors. These are already given to you, and are initialized so that
the results of the program are reproducible by default.

Complete the function do_mlmc to implement single-level Monte Carlo, which will read from the
JSON file the number of samples (nsamples_finest) as well as the number of cells (n_interior_cells_coarsest).

Make use of the function generate_all_omegas as well as your own make_fvm.

Compute statistics of the functionals with your class Statistics.

2e)

Template: src/fvm uq.cpp.

Expand your implementation of do_mlmc to multi-level Monte Carlo, for n_levels>1.

For level l, use a mesh with 2l * n_interior_cells_coarsest cells, and 2(nl−l) * nsamples_finest

samples.

Compute statistics of the functional with your class Statistics. Does it hold that the variance of
the details tends to zero?

2f)

An alternative to the (ML)MC framework lies in Machine Learning techniques.

One must start by generating a training set for the neural network. For this, complete function
generate_dataset, which will run if parameter generate_dataset in config.json is set to true.

This function must generate two lists of nsamples_finest elements. Each element in the first list
is a realization ωi of a vector of random parameters ω ∼ (U [0, 1])k. Each element in the second list
is the corresponding evaluations of the functional {Lj

T (Uh
ωi

)}Jj=1.

Print this output to a file (e.g. a JSON file); this will be your input for the next exercise.

Hint: Your Monte Carlo routine can be of use in this.

7



Exercise 3 Learning a Functional by Deep Neural Networks

Let U : D × [0, T ]× Ω→ Rm be the solution of

Ut + F(U)x = 0 (11)

U(x, 0;ω) = U0(x;ω) (12)

with D = [−5, 5], m = 3, U = (ρ, ρv, E) and F(U) = (ρv, ρv2 + p, v(E + p)). Furthermore, let
Ω = [0, 1]k, k = 6 and U0(x;ω) be the initial conditions of a Sod shock tube with random location
and strength. More precisely,

U0(x;ω) =

{
UL(ω) x < ξ(ω)

UR(ω) otherwise,
(13)

where UL and UR are the states to the left and right of the shock defined by the values of their
primitive variables:

ρL = 1 + εG(ω2), vL = ε2G(ω4), pL = 1 + εG(ω5) (14)

ρR = 0.125(1 + εG(ω3)), vR = ε2G(ω4), pR = 0.1(1 + εG(ω6)), (15)

with ε = 0.1, G(ω) = 2ω − 1. Note that vL = vR and ξ(ω) := εG(ω1).

For j = 1, . . . 3, let

Lj : Ω→ R, ω 7→
∫
Ij

ρ(x, T ;ω)dx, (16)

where I1 = [−1.5, −0.5], I2 = [0.8, 1.8] and I3 = [2, 3], and ρ be the density of the solution to the
Euler equations. Furthermore, let L := (L1, L2, L3).

The aim of this exercise is to study the approximation of L by a Deep Neural Network (DNN).

3a)

Define a suitable architecture of your neural network, e.g. number of layers, number of neurons per
layer and the activation function of each layer.

Also explicitly write down the neural network as a concatenation of non-linear and affine transfor-
mations.

3b)

Formulate both the continuous optimization problem which is referred to as “training the neural
network”, and the discrete version of the optimization problem which is solved in practice.

8



3c)

Train a neural network which approximates L. You are trying to achieve a relative L2-error of a
few percent.

3d)

Use this example to familiarize yourself with the concepts related to DNNs.

For example, by answering the following questions:

• What is Adam’s optimizer?

• What is “batch size” and how does it affect the discrete version of the optimization problem?

• What are “epochs”, and what is their connection to the number of steps in the optimization?

• How does the batch size affect the runtime of the training? How should one choose the batch
size?

• What are the features this problem has which make us interested in solving it using DNNs?

• How does the accuracy achieved by approximating L by DNNs compare with traditional
methods?

Some of these questions are rather high-level and do not have precise mathematical answers (yet).

9


