
COMPUTATIONAL METHODS FOR
ENGINEERING APPLICATIONS

Lecture Notes by Prof. Dr. Siddhartha Mishra

January 25, 2019

1

Contents

1 Introduction 6
1.1 What is a Differential Equation? 6
1.2 Ordinary Differential Equations (ODEs) 7
1.3 Initial Value Problems (IVPs) for ODEs 8

1.3.1 Single Body Dynamics 8
1.3.2 N -Body Dynamics 9
1.3.3 A Simple Pendulum 10
1.3.4 A Population (Concentration) Model from Cell Biology 10
1.3.5 Models of Chemical Kinetics 12

1.4 Generic Form of IVPs for ODEs 13
1.5 Types of ODEs . 15
1.6 Explicit Solutions of ODEs 16
1.7 Well-Posedness of Initial Value Problems for ODEs 20

2 Numerical Methods for Ordinary Differential Equations 23
2.1 Time Discretisation . 23
2.2 Forward Euler Method . 24
2.3 Backward Euler Method . 25
2.4 Trapezoidal Method . 26
2.5 Mid-point Rule . 27
2.6 Numerical Experiments . 28
2.7 Truncation Error . 31
2.8 One-Step Error . 33
2.9 Global Error . 35
2.10 Taylor Expansion Methods 36

3 Higher-Order Methods for ODEs 37
3.1 The Runge-Kutta-2 (RK-2) Method 37

3.1.1 Order of Accuracy of the RK-2 Method 38
3.2 The Classical Runge-Kutta-4 (RK-4) Method 39

3.2.1 Order of Accuracy of the RK-4 Method 39

2

Contents

3.3 Numerical Experiments . 40
3.4 General Form of the Runge-Kutta Methods 43
3.5 Consistency Conditions for Runge-Kutta methods 44
3.6 Examples of Runge-Kutta methods 45
3.7 Order of Accuracy of General RK Methods 47

4 Multi-Step Methods for Solving ODEs 49
4.1 Adams Methods . 50
4.2 Adams-Bashforth Methods 50
4.3 Adams-Moulton Methods . 51
4.4 Truncation Error . 52
4.5 Starting Values . 53
4.6 Concluding Remarks . 53

5 Stability of Numerical Methods for ODEs 54
5.1 Convergence of Forward Euler for Linear ODEs 55
5.2 Convergence of Forward Euler for Non-Linear ODEs 57
5.3 Convergence of Consistent One-Step Methods 59
5.4 Why Convergence is Not Enough 60
5.5 Absolute Stability . 62

5.5.1 Absolute Stability of Backward Euler Method 63
5.5.2 Absolute Stability of Trapezoidal Rule 64

5.6 Absolute Stability of Systems of ODEs 65
5.7 Stiff Problems . 66
5.8 BDF Methods . 68

6 The Poisson Equation 69
6.1 Derivation of Poisson’s Equation 70

6.1.1 A Variational Principle 70
6.2 The Poisson Equation in One-Space Dimension 72

6.2.1 Limitations of the Green’s Function Representation . 73
6.3 Finite Difference Methods 74

6.3.1 Discretising the domain 74
6.3.2 Discretising the Derivatives 75
6.3.3 The finite Difference Scheme 75
6.3.4 Solving the Matrix Equation 76

6.4 Numerical Results . 76
6.5 Finite Difference Schemes for the 2-D Poisson Equation . . . 78

6.5.1 Numerical Results in 2-D 80

7 Finite Element Methods for the 1-D Poisson Equation 84

3

Contents

7.1 Variational Principles . 84
7.2 A Variational Formulation 88
7.3 The Finite Element Formulation 89

7.3.1 Concrete Realisation of FEM 92
7.3.2 Computing the Stiffness Matrix and the Load Vector 94

7.4 Convergence Analysis . 95
7.5 Numerical Experiments . 97

8 Finite Element Methods for the 2-D Poisson Equation 100
8.1 The two-dimensional Poisson Equation 101

8.1.1 Variational Formulation 101
8.2 The Finite Element Formulation 102

8.2.1 Triangulations . 102
8.2.2 Concrete Realisation of FEM 103
8.2.3 Numerical Experiments in 2-D 107

9 Implementation of the Finite Element Method 113
9.1 Treatment of Inhomogeneous Boundary Conditions 120

9.1.1 Finite Element Formulation 121

10 Parabolic Partial Differential Equations 123
10.1 Exact Solutions to the Heat Equation 123

10.1.1 Evaluation of the Exact Solution 126
10.2 Energy Estimate . 127

10.2.1 Consequence of the Energy Estimate 128
10.3 Maximum Principles . 128
10.4 Finite Difference Schemes for the Heat Equation 132

10.4.1 Numerical Results 134
10.4.2 Discrete Energy Stability 138
10.4.3 Discrete Maximum Principle 141
10.4.4 Truncation Error . 142

10.5 An Implicit Finite Difference Scheme 143
10.5.1 Discrete Energy Stability 144
10.5.2 Discrete Maximum Principle 145
10.5.3 Numerical Results 146

10.6 Crank-Nicolson Scheme . 147
10.6.1 Discrete Energy Stability 148
10.6.2 Truncation Error . 150

10.7 Convergence Studies . 151

11 Linear Transport Equations (Hyperbolic PDEs) 153

4

Contents

11.1 Method of characteristics . 153
11.2 Finite difference schemes for the transport equation 156
11.3 An upwind scheme . 161
11.4 Stability for the upwind scheme 163

5

1 Introduction

Many fundamental problems in engineering involve the study of physical
quantities that evolve with time or change with spatial position. Such
relationships can be expressed mathematically as differential equations. The
aim of this course is to present numerical (computational) methods for
discretising i.e. approximating and simulating differential equations that
arise in engineering.

1.1 What is a Differential Equation?

Let d ∈ {1, 2, 3} and let x ∈ Rd denote the spatial position of our system.
Thus depending on the dimension of our problem, x could be a scalar or
a vector. In general we may write x = {xi}i=1,2,3. Let T ∈ (0,∞) denote
some fixed, final time and let t ∈ [0, T] denote the time variable. Let
m ∈ {1, 2, . . .} and let u = u(x, t) : Rd × [0, T] → Rm be a function. Thus
once again depending on our problem, u could be a scalar i.e. u(x, t) ∈ R
or u could be a vector i.e. u(x, t) ∈ Rm for some m > 1.

Let

ut =
∂u

∂t
, utt =

∂2u

∂t2
, . . . , utt...t︸︷︷︸

k times

=
∂ku

∂tk
, . . .

uxi =
∂u

∂xi
, uxixj =

∂2u

∂xi∂xj
, . . .

denote the partial derivatives of u. Then a differential equation is an
equation of the form

F
(
x, t, u, ut, uxi , utt, uxixj , . . .

)
= 0, (1.1)

where F is some general, known function.

Equation (1.1) implies that the function u and its partial derivatives are
related in some way. Therefore, the task of solving Equation (1.1) amounts

6

1.2. Ordinary Differential Equations (ODEs)

to finding the unknown function u, given information on the relation be-
tween its partial derivatives. Of course, the abstract form of the differential
equation (1.1) is not very instructive, and it is more helpful to consider
concrete cases of differential equations.

1.2 Ordinary Differential Equations (ODEs)

ODEs are the simplest type of differential equations. Essentially, we assume
that the unknown of interest u is a function of exactly one variable (say
time). More formally, we assume that u = u(t) : [0, T]→ Rm where m = 1
if u is a scalar-valued function and m > 1 if u is a vector-valued function.
In either case equation (1.1) reduces to

F
(
t, u, ut, utt, . . .

)
= 0. (1.2)

Thus, the task of solving Equation (1.2) amounts to finding the unknown
function u, given information on the relation between its derivatives.

It is instructive to consider a simple example of Equation (1.2).

Example 1.1 Consider the ordinary differential equation given by

ut = 1. (1.3)

Clearly, all solutions of (1.3) are of the form

u(t) = t+ C,

where C ∈ R is some fixed constant. Therefore, in order to find a unique
solution to (1.3), it is necessary to specify a value for the constant C. A
natural way to do so is to set the value of C equal to the initial value of the
function u, i.e., by specifying

u(0) = C.

This leads us to the extremely important concept of initial value problems
(IVPs).

7

1.3. Initial Value Problems (IVPs) for ODEs

1.3 Initial Value Problems (IVPs) for ODEs

Let

u′ = ut,

u′′ = utt,

...

u(k) = utt...t︸︷︷︸
k times

denote the first-order, second-order and higher order time derivatives of the
function u. Then, the general form of an initial value problem (IVP) for an
ODE is given by

F
(
t, u, u′, u′′,u(3), . . . , u(k)

)
= 0,

u(0) = u0,

u′(0) = u1,

...

u(k−1)(0) = uk−1.

(1.4)

We observe that solving the IVP (1.4) amounts to finding a function u =
u(t) given a relation between its time derivatives and their initial values.

Initial value problems for ordinary differential equations arise in a wide
variety of models in engineering. We give a few prototypical examples in
the next subsections.

1.3.1 Single Body Dynamics

Consider a single particle of mass m = 1 with position x = x(t) and velocity
v = v(t) at time t. Then, the trajectory of the particle is given by

x′(t) = v(t), (Definition of the velocity)

v′(t) = f, (Newton’s Second Law)

where f is the force acting on the particle. Of course, the force f = f(t, u(t))
needs to be specified and for simplicity we consider a given external force
f = f(t). The single body dynamics are then completely specified by the
IVP

x′(t) = v(t), x(0) = x0,

v′(t) = f, v(0) = v0.
(1.5)

8

1.3. Initial Value Problems (IVPs) for ODEs

Here, x0 and v0 are the initial position and initial velocity of the particle
respectively. It is possible to rewrite the IVP (1.5) in a slightly different
form. Indeed, let

U = [x, v],

F = [v, f].

Then the IVP (1.5) can be rewritten in the compact form

U ′ = F (t, U), U(0) = [x0, v0]. (1.6)

Note that U is a vector and the force f = f(t).

1.3.2 N -Body Dynamics

A more general situation arises if we considerN bodies with masses (m1, . . . ,mN),
positions (x1, . . . , xN) and velocities (v1, . . . , vN). Then, applying Newton’s
Second Law to this collection of N bodies results in the following system of
2N equations:

x′i = vi, i = 1, 2, . . . , N,

miv
′
i = fi, i = 1, 2, . . . , N.

We assume here that the only force acting on the particles is gravity and
furthermore that we are in three spatial dimensions. Then by Newton’s Law
of Gravitation for all i = 1, 2, . . . , N , it holds that the force of attraction fi
exerted on the ith particle by the other N − 1 particles is given by

fi =
N∑

i=1, j 6=i

Gmimj(xi − xj)
|xi − xj|3

,

where G is the Gravitational constant. Next, let

U = [x1, . . . , xN , v1, . . . , vN],

F = [v1, . . . , vN , f1, . . . , fN],

and we again obtain an IVP of the form (1.6)

U ′(t) = F (U(t)), U(0) = [x0
1, . . . , x

0
N , v

0
1, . . . v

0
N]. (1.7)

9

1.3. Initial Value Problems (IVPs) for ODEs

x

y

L

m

θ(t)

Figure 1.1: An example of a simple pendulum

1.3.3 A Simple Pendulum

Consider a pendulum of mass m at the end of a rigid, massless bar of length
L (see Figure 1.1). The motion of the pendulum is described in terms of
the angle θ(t) and can be derived using the Newton’s Second Law applied
to curvilinear motion:

θ′′(t) = − g
L

sin
(
θ(t)

)
.

For simplicity, we may assume that L = g and we therefore obtain the
pendulum equation

θ′′(t) = − sin
(
θ(t)

)
,

θ(0) = θ0, θ′(0) = v0.
(1.8)

Exercise 1.2 Show that for small values of the angle, θ(t) � 1, the IVP
(1.8) can be approximated by

θ′′(t) = −θ(t),
θ(0) =θ0, θ′(0) = v0.

Note that in order to solve the IVP (1.8), it is necessary to specify the
initial angle θ(0) and the initial angular velocity θ′(0).

1.3.4 A Population (Concentration) Model from Cell Biology

Proteins are functional units of living cells. New proteins in cells are man-
ufactured by the sequential processes of transcription and translation:

• In the process of transcription, a gene is expressed in terms of mes-
senger RNA (mRNA).

10

1.3. Initial Value Problems (IVPs) for ODEs

• In the process of translation, the mRNA is used to synthesis proteins.

We consider a simple mathematical model of protein biosynthesis. Let
X = X(t) denote the concentration of a gene (X), let Y = Y (t) denote the
concentration of mRNA (Y) and let Z = Z(t) denote the concentration of
protein (Z). Then we have the following reaction scheme:

X
transcription−−−−−−−→ Y

translation−−−−−−−→ Z.

In the simplest mathematical model, the gene concentration is given a priori
and the mRNA concentration satisfies the following ODE:

Y ′(t) = F1(X)− α1Y (t), (1.9)

where α1 > 0 is a decay constant and the function F1 models the production
of the mRNA as a function of the gene concentration X and is given by

F1(X) =
β1X

n

Kn
1 +Xn

.

Here, n ∈ N and β1 > 0 and K1 > 0 are constants that characterise the
mRNA production rate and the mRNA production threshold respectively.
We also remark that for any natural number n ∈ N the function fn given
by

fn(x) =
xn

kn1 + xn
(1.10)

is known as a n-Hill function. This function is widely used in biochemistry
to model the binding of ligands such as enzymes to macromolecules and
usually the values n = 4 or n = 8 are chosen. Examples of n-Hill functions
for some values of n are displayed in Figure 1.2.

Similarly, the kinetics of the protein concentration is modelled by the fol-
lowing ODE:

Z ′(t) = F2(Y)− α2Z(t), (1.11)

with α2 a decay constant and the function F2 given by

F2(Y) =
γβ2Y

n

Kn
2 + Y n

,

where β2 > 0 is the maximum protein production rate, K2 > 0 is the protein
activation threshold and γ > 0 is the transcription rate.

11

1.3. Initial Value Problems (IVPs) for ODEs

X

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n=1

n=2

n=4

n=8

Figure 1.2: Examples of n-Hill functions for various values of n.

We may combine (1.9) and (1.11) into a more compact form in the following
manner. Let

U = [Y, Z],

F =
[β1X

n

Kn
1 +Xn

−α1Y,
γβ2Y

n

Kn
2 + Y n

− α2Z
]
,

and we again obtain an IVP of the form (1.6)

U ′(t) = F (t, U(t)), U(0) = [Y0, Z0].

1.3.5 Models of Chemical Kinetics

EXAMPLE 1

We consider the following set of chemical reactions:

A
rate of reaction k1−−−−−−−−−−→ B

rate of reaction k2−−−−−−−−−−→ C.

Here, A,B and C are chemical reactants with concentrations u1, u2 and
u3 respectively. We assume that the chemical reactant A decays to the
chemical reactant B at the constant rate k1 > 0 and the chemical reactant
B decays to the chemical reactant C at the rate k2 > 0. Therefore, our
model satisfies the following system of ODEs:

u′1(t) = −k1u1(t),

u′2(t) = k1u1(t)− k2u2(t),

u′3(t) = k2u2(t).

(1.12)

Let U = [u1, u2, u3] and let the 3× 3 matrix A be given by

A =

 −k1 0 0
k1 −k2 0
0 k2 0

 .
12

1.4. Generic Form of IVPs for ODEs

Then we obtain the following IVP for the chemical kinetics of this set of
chemical reactions:

U ′(t) = F (U(t)) = AU(t),

U(0) = [u0
1, u

0
2, u

0
3].

(1.13)

EXAMPLE 2: Compound Formation

We next consider the following chemical reaction:

A+B
k1−−−−−⇀↽−−−−−
k2

AB

Here, A and B are chemical reactants that react together to produce the
chemical compound AB. Let A,B and AB have concentrations u1, u2 and
u3 respectively and assume that the reactants A and B combine to form the
compound AB at the rate k1 and the compound AB breaks down into the
reactants A and B at the rate k2. Our model then satisfies the following
system of ODEs:

u′1(t) = −k1u1(t)u2(t) + k2u3(t),

u′2(t) = −k1u1(t)u2(t) + k2u3(t),

u′3(t) = k1u1(t)u2(t)− k2u3(t).

(1.14)

Let U = [u1, u2, u3] and let the function F be given by

F (U) =
[
k2u3 − k1u1u2, k2u3 − k1u1u2, k1u1u2 − k2u3

]
.

Then we obtain the following IVP for the chemical kinetics of this chemical
reaction:

U ′(t) = F (U(t)),

U(0) = [u0
1, u

0
2, u

0
3].

(1.15)

1.4 Generic Form of IVPs for ODEs

The examples of Section 1.3, chosen from different fields, suggest that the
generic form of an IVP

U ′(t) = F
(
t, U(t)

)
,

U(0) = u0,
(1.16)

13

1.4. Generic Form of IVPs for ODEs

represents nearly all of them. Of course this is not strictly true for the case
of the simple pendulum in Section 1.3.3. We recall that the motion of a
simple pendulum is described by the IVP given by

θ′′(t) =− sin
(
θ(t)

)
,

θ(0) = θ0, θ′(0) = v0.
(1.17)

It turns out that a simple change of variables in Equation (1.17) can cast it
in the generic form of Equation (1.16). To this end, let v(t) = θ′(t). Then
it holds that

θ′(t) = v(t),

v′(t) =− sin
(
θ(t)

)
,

θ(0) = θ0, v(0) = v0.

(1.18)

Therefore introducing the vectors

U = [θ, v],

F = [v,− sin(θ)],

we obtain the following IVP:

U ′(t) = F
(
t, U(t)

)
,

U(0) = u0

(1.19)

and clearly, Equation (1.19) is of the generic form (1.16).

Equation (1.16) is known as the first-order form of the initial value problem
for ODEs. In general any initial value problem (IVP) for an ODE can
be recast in the first-order form (1.16). Let us consider a second simple
example.

Example 1.3 Consider the following initial value problem:

u(4)(t) = 3u′′′(t)u′(t) + 2
(
u′′(t)

)3 − sin(t),

u(0) = x0, u′(0) = x1, u′′(0) = x3, u′′′(0) = x4.
(1.20)

We introduce auxiliary variables given by

u1(t) = u(t), u2(t) = u′(t),

u3(t) = u′′(t), u4(t) = u′′′(t).

Let the vectors U and F be given by

U = [u1, u2, u3, u4],

F = [u2, u3, u4, 3u2u4 − 2u2
3 − sin(t)]

14

1.5. Types of ODEs

Then the IVP (1.20) can be rewritten as a first-order IVP given by

U ′(t) = F
(
t, U(t)

)
,

U(0) = [x0, x1, x2, x3].

1.5 Types of ODEs

In this section we describe different classifications of ordinary differential
equations (ODEs).

• Autonomous and Non-Autonomous ODEs

Consider a first order ODE of the form (1.16). This ordinary differen-
tial equation is termed as autonomous if for all t ∈ [0, T] it holds that
F (t, U(t)) ≡ F (U(t)) i.e., the right hand side of Equation (1.16) does not
depend explicitly on time. Thus, the IVP for an autonomous ODE is given
by

U ′(t) = F
(
U(t)

)
,

U(0) = u0.
(1.21)

An ODE which is not autonomous is termed non-autonomous. Examples of
autonomous ODEs include N-body dynamics (Section 1.3.2), the pendulum
equation (Section 1.3.3) and the models of chemical kinetics (Section 1.3.5).
On the other hand, examples of non-autonomous ODEs include the protein
biosynthesis model (Section 1.3.4) and the model ODE (1.20).

Interestingly, a simple trick allows us to convert any non-autonomous ODE
into an autonomous ODE.

Algorithm for converting non-autonomous ODEs: Consider a non-
autonomous IVP of the form (1.16) with u = [u1, u2, . . . , um] ∈ Rm and
F = [F1, F2, . . . , Fm] ∈ Rm. Let the function um+1 be given by um+1(t) = t
and let the vectors W and G be given by

W = [u1, u2, . . . , um, um+1],

G(W) =
[
F1(u1, . . . , um+1), F2(u1, . . . , um+1), . . . , Fm(u1, . . . , um+1), 1

]
.

Then the IVP (1.16) can be rewritten as the following autonomous IVP:

W ′(t) = G(W (t)),

W (0) = [u1(0), u2(0), . . . , um(0), 0].
(1.22)

15

1.6. Explicit Solutions of ODEs

To check this, it is sufficient to observe that u′m+1(t) = 1 and um+1(0) = 0
together imply that um+1(t) = t, and therefore the autonomous system
(1.22) is consistent with the non-autonomous system (1.16).

• Scalar ODEs and Systems of ODEs

Depending on the dimensions of the ODE, the unknown function of interest
u in the IVP (1.16) could be scalar-valued or vector-valued. For instance, in
the case of the pendulum equation (Section 1.3.3), it holds that u ∈ R and
therefore Equation (1.8) is an example of a scalar ODE. On the other hand,
many physical problems are modelled by systems of ODEs in which case it
holds that u ∈ Rm for some m > 1. Examples of systems of ODEs include
N-body dynamics (Section 1.3.2), the protein biosynthesis model (Section
1.3.4) and the models of chemical kinetics (Section 1.3.5). Furthermore,
even the pendulum equation, written in the first-order form (1.19) is a
system of ODEs.

• Linear and Non-Linear ODEs

The ODE (1.16) is termed linear if the right-hand side function F is linear
in U . In particular, a sufficient condition for the linearity of the ODE (1.16)
is that the function F can be written as

F (t, U(t)) = A(t)U(t) + C(t),

where U ∈ Rm is an m-dimensional vector, A ∈ Rm×m is an m×m matrix
and C ∈ Rm is an m-dimensional vector. Note that if C(t) ≡ 0, then the
ODE (1.16) is termed homogeneous and any linear combination of solutions
to such an ODE is also a solution to the ODE.

An ODE which is not linear is termed non-linear. Examples of linear ODEs
include the models of chemical kinetics (Section 1.3.5). On the other hand,
examples of non-linear ODEs include N-body dynamics (Section 1.3.2), the
pendulum equation (Section 1.3.3) and the protein biosynthesis model (Sec-
tion 1.3.4). We remark that most interesting phenomenon in nature are
modelled by non-linear differential equations.

1.6 Explicit Solutions of ODEs

It is possible to obtain explicit solutions for a few ODEs. In this section,
we consider some simple examples of such ODEs.

16

1.6. Explicit Solutions of ODEs

Example 1.4 (Linear Scalar ODE) Consider a linear, scalar, autono-
mous IVP given by

u′(t) = λu(t),

u(0) = u0,
(1.23)

where u ∈ R, u0 ∈ R and λ ∈ R is a constant.

The solution of the IVP (1.23) is then given by

u(t) = u0e
λt. (1.24)

Example 1.5 (Linear System of ODEs) Consider the following IVP
involving a linear system of ODEs:

u′(t) = Au(t),

u(0) = u0,
(1.25)

where u ∈ Rm, u0 ∈ Rm and A ∈ Rm×m is a constant m×m matrix.

Assume that the matrix A is diagonalisable i.e., there exists a set of eigen-
values {λ1, λ2, . . . , λm} and a set of eigenvectors {r1, r2, . . . , rm} such that
{ri}mi=1 forms a basis of Rm and such that

A = RΛR−1, (1.26)

where

Λ =


λ1 0 . . . 0

0 λ2
. . . 0

...
. 0

0 0 0 λm

 = diag(λ1, λ2, . . . , λm)

and

R =

[
r1

∣∣∣∣∣r2

∣∣∣∣∣ . . .
∣∣∣∣∣rm
]

is the m×m matrix whose columns consist of the eigenvectors {ri}mi=1.

Then it holds that (
R−1u(t)

)′
= R−1(RΛR−1)u(t)

= ΛR−1u(t).

17

1.6. Explicit Solutions of ODEs

Next, let w = R−1u. Then the IVP (1.25) can be rewritten as

w′(t) = Λw(t),

w(0) = R−1u0.
(1.27)

Now the point is that matrix Λ is diagonal, and therefore the system (1.27)
consists of an uncoupled set of m-scalar equations:

w′i(t) = Λiwi, wi(0) = R−1u0i, i = 1, . . . ,m.

Hence, for all i = 1, 2, . . . ,m it holds that

wi(t) = wi(0)eλit,

and therefore

w(t) =


eλ1t 0 . . . 0

0 eλ2t
. . . 0

...
. 0

0 0 0 eλmt



w1(0)
w2(0)

...
wm(0)

 .

Next, let eΛt = diag(eλ1t, . . . , eλmt). Then it follows that

w(t) = eΛtw(0)

= eΛtR−1u0.

And hence,

R−1u(t) = eΛtR−1u0.

=⇒ u(t) = ReΛtR−1u0

= eAtu0.

It remains to define the notion of a matrix exponential for a general matrix.
To this end, we define for a given m×m matrix A the matrix exponential
as

eAt = I + At+
1

2
A2t2 + . . .+

1

k!
Aktk + (1.28)

The last equality then follows from the results of Exercise 1.6.

Exercise 1.6 Let A ∈ Rm×m be a diagonalisable matrix such that Equation
(1.26) holds. Show that for all t ∈ [0, T] it holds that

eAt = ReΛtR−1.

18

1.6. Explicit Solutions of ODEs

Example 1.7 (Duhamel’s Principle (Variation of Constants))
We consider the following linear, scalar, non-autonomous IVP:

u′(t) = λu(t) + g(t),

u(0) = u0,
(1.29)

where u ∈ R, u0 ∈ R, λ ∈ R is a constant and g : [0, T]→ R is a continuous
function.

We begin by defining v(t) = u(t)e−λt. Hence, it holds that u(t) = v(t)eλt,
and therefore we have assumed that the solution u consists of a variable
constant v(t) multiplied with the homogeneous solution eλt. This assumption
on the form of the solution motivates the name variation of constants. It
then follows that

v′(t) = u′(t)e−λt − λu(t)e−λt =
(
u′(t)− λu(t)

)
e−λt

(1.29)
= g(t)e−λt.

It therefore follows that

v(t) = u0 +

∫ t

0

g(s)e−λsds.

Hence,

u(t)e−λt = u0 +

∫ t

0

g(s)e−λsds.

=⇒ u(t) = u0e
λt +

∫ t

0

g(s)eλ(t−s)ds.

Exercise 1.8 Consider the following IVP involving a linear, non-autonomous
system of ODEs:

u′(t) = Au(t) + g(t),

u(0) = u0,
(1.30)

where u ∈ Rm, u0 ∈ Rm, A ∈ Rm×m is a constant, diagonalisable m ×m
matrix and g : [0, T]→ Rm is a continuous function.

Show that the solution to the IVP (1.30) is given by

u(t) = eAtu0 +

∫ t

0

eA(t−s)g(s)ds. (1.31)

19

1.7. Well-Posedness of Initial Value Problems for ODEs

We observe that all of the examples considered in this section have involved
linear ODEs. Unfortunately, explicit solutions can only be obtained for very
few non-linear ODEs. Therefore, solving non-linear IVPs necessitates the
use of numerical methods to approximate these ODEs. This has resulted in
an extremely rich literature on the numerical analysis of ordinary differential
equations.

1.7 Well-Posedness of Initial Value Problems for ODEs

In this section, we briefly explore the questions of existence and uniqueness
of solutions to initial value problems for ordinary differential equations. The
main result on well-posedness of IVPs for ODEs is the Cauchy-Lipschitz
Theorem (also known as the Picard-Lindelöf Theorem).

Theorem 1.9 (Cauchy-Lipschitz) Let U ⊆ Rm be an open set and con-
sider the following non-autonomous IVP:

u′(t) = F
(
t, u(t)),

u(0) = u0,
(1.32)

where u0 ∈ U ⊆ Rm is a constant, and F : [0, T]×Rm → Rm and u : [0, T]→
Rm are continuous functions in t.

Suppose that the function F is Lipschitz continuous on the set [0, T] × U ,
i.e., there exists L > 0 such that for all (t, u), (t, u∗) ∈ [0, T] × U it holds
that

‖F (t, u)− F (t, u∗)‖ ≤ L‖u− u∗‖ (1.33)

where ‖ · ‖ is any vector norm. Then there exists T ∗ ∈ (0, T) such that the
IVP (1.32) has a unique solution in the time interval [0, T ∗].

We now attempt to check the hypothesis of Theorem 1.9 for some simple
ODEs.

Example 1.10 Consider the linear, autonomous ODE given by

u′(t) = Au(t),

where u ∈ Rm and A ∈ Rm×m is a constant m×m matrix.

Clearly for all u, u∗ ∈ Rm it holds that

‖Au− Au∗‖Rm ≤ ‖A‖2‖u− u∗‖Rm .

20

1.7. Well-Posedness of Initial Value Problems for ODEs

where ‖ · ‖Rm is the Euclidean norm and ‖ · ‖2 is the spectral norm. Since
the spectral norm ‖A‖2 is bounded, we can successfully apply Theorem 1.9
in this case.

Example 1.11 Consider the first-order Pendulum equation (1.19). In this
case the function F : R2 → R2 is given by

F (θ, v) = [v, sin(θ)].

It follows that for all (θ, v), (θ∗, v∗) ∈ R2 it holds that

‖F (θ, v)− F (θ∗, v∗)‖1 = ‖
(
v − v∗, sin(θ)− sin(θ∗)

)
‖1

= |v − v∗|+ | sin(θ)− sin(θ∗)|
= |v − v∗|+ | cos(θ̄)||θ − θ∗|,

where θ̄ ∈
[

min{θ, θ∗}, max{θ, θ∗}
]

and the last equality is a consequence
of the Mean Value Theorem. Hence for all (θ, v), (θ∗, v∗) ∈ R2 it holds that

‖F (θ, v)− F (θ∗, v∗)‖1 ≤ |v − v∗|+ |θ − θ∗| = ‖(θ, v)− (θ∗, v∗)‖1.

Thus the function F is Lipschitz continuous with Lipschitz constant 1.
Therefore, we can once again successfully apply Theorem 1.9. We remark
that in this example we used the l1 norm which resulted in a Lipschitz con-
stant of exactly 1. Using a different norm could potentially result in a
Lipschitz constant greater than 1.

Example 1.12 Consider a non-linear, scalar, autonomous IVP given by

u′(t) =
(
u(t)

)2
,

u(0) = u0,
(1.34)

where u ∈ R and u0 ∈ R is a positive constant.

We immediately observe that the function F : R→ R given by F (u) = u2 is
not globally Lipschitz continuous. Therefore, we can only appeal to Theorem
1.9 to establish uniqueness locally, but not globally. Indeed, the explicit
solution in this case is given by

u(t) =
u0

1− u0t
.

Clearly, lim
t→1/u0

−
u(t) =∞ and therefore the solution only exists for

0 ≤ t <
1

u0

.

21

1.7. Well-Posedness of Initial Value Problems for ODEs

Example 1.13 Finally, consider a non-linear, scalar, autonomous IVP
given by

u′(t) =
√
|u(t)|,

u(0) = 0,
(1.35)

where u ∈ R.

We observe once again that the function F : R→ R given by F (u) =
√
|u| is

not Lipschitz continuous in a neighbourhood of u = 0. Therefore, once again
we cannot apply Theorem 1.9 to prove the existence of a unique solution to
the IVP (1.35). Indeed, there exist at least two different solutions to this
IVP:

u(t) ≡ 0,

and also

u(t) =
1

4
t2.

Thus we require Lipschitz continuity in order to guarantee uniqueness of
solutions to IVPs.

22

2 Numerical Methods for Ordinary
Differential Equations

In this chapter we will describe different methods to numerically approxi-
mate solutions of the standard first-order initial value problem for ODEs

u′(t) = F (t, u(t)),

u(0) = u0,
(2.1)

where u0 ∈ Rm is a constant, u : [0, T] → Rm and F : [0, T] × Rm → Rm.
Depending on the dimension of our problem and hence the value of m ∈ N,
both u and F can be scalar or vector-valued functions.

Recall that we claimed in Section 1.6 that it is only possible to find explicit
solutions for the IVP (2.1) in a handful of cases and therefore we require
numerical methods to obtain approximate solutions to the IVP (2.1).

2.1 Time Discretisation

We consider the IVP (2.1) in the time interval [0, T] where T ∈ (0,∞) is
some fixed, final time. The first step in the numerical analysis of this IVP
involves the discretisation of the time domain. Therefore, let ∆t > 0 be the
time step size, let N = T

∆T
be the total number of time steps and consider

the partition of the time domain given by

[0, T) = ∪N−1
n=0 [tn, tn+1),

where tn = n∆t. Thus, we have divided the time period [0, T] into N
equally spaced intervals (see Figure 2.1). The time steps {tn}Nn=0 are also
termed time levels and we use the notation tn to refer to the nth time level.

Our aim is to now numerically approximate the exact solution u of the IVP

23

2.2. Forward Euler Method

Figure 2.1: Time discretisation of the domain [0, T].

(2.1) at these time levels. We therefore denote by {Un}Nn=0 the approxima-
tions of the exact solution u at each time level:

Un ≈ u(tn) (2.2)

We conclude that numerically solving the IVP (2.1) amounts to calculating
the quantities {Un}Nn=0. In addition, we observe that the initial condition
of the IVP (2.1) implies that U0 ≈ u(t0) = u(0) = u0 and hence we may set
U0 = u0.

We remark that throughout this section we have assumed for simplicity
that the time steps are of equal spacing, i.e. for all n = 1, . . . , N it holds
that tn− tn−1 = ∆t where ∆t is a fixed constant. We will consider the more
general situation of a non-uniform time discretisation in later parts of this
chapter.

2.2 Forward Euler Method

In order to obtain the approximate solutions at each time level {Un}Nn=0,
it is necessary to approximate the IVP (2.1). Hence, the next step is to
obtain suitable approximations of the time derivative u′ and the right-hand
side F

(
t, u(t)

)
.

The simplest discretisations of the derivative are given by the finite differ-
ence formulae. The most obvious choice is the so-called forward difference
approximation. Thus for each n ∈ {0, . . . , N − 1} we approximate the time
derivative by

u′(tn) ≈ u(tn+1)− u(tn)

∆t
≈ Un+1 − Un

∆t
.

24

2.3. Backward Euler Method

In addition, for each n ∈ {0, . . . , N − 1} the right-hand side F is approxi-
mated by

F (tn, u(tn)) ≈ F (tn, Un).

Therefore, for each n ∈ {0, . . . , N − 1} we obtain the following approxima-
tion of the IVP (2.1):

Un+1 − Un
∆t

= F (tn, Un),

U0 = u0.
(2.3)

A simple rearrangement of the terms in Equation (2.3) yields for each n ∈
{0, . . . , N − 1}

Un+1 = Un + ∆tF (tn, Un),

U0 = u0.
(2.4)

The numerical scheme given by (2.3) or (2.4) is known as the Forward
Euler method and is one of the simplest examples of a numerical scheme
for approximating solutions to the IVP (2.1). A characteristic of the For-
ward Euler method (2.4) is that the method can be implemented as a time
marching scheme

U0 7→ U1 7→ U2 7→ . . . Un 7→ Un+1 . . . 7→ UN .

In other words, for each n ∈ {0, . . . , N − 1}, we can compute the approxi-
mate solution Un+1 using the previous value Un and a simple function eval-
uation given by Equation (2.4). In particular, the Forward Euler method
is also called the Explicit Euler method.

2.3 Backward Euler Method

The forward difference approximation for time derivatives considered in
Section 2.2 is not our only choice. Another possibility is to employ the so-
called backward difference approximation instead of the forward difference
approximation. Thus for each n ∈ {0, . . . , N−1} ,we approximate the time
derivative u′ by

u′(tn+1) ≈ u(tn+1)− u(tn)

∆t
≈ Un+1 − Un

∆t
,

and for each n ∈ {0, . . . , N − 1} we approximate the right-hand side F by

F (tn+1, u(tn+1)) ≈ F (tn+1, Un+1).

25

2.4. Trapezoidal Method

Note that both u′ and the right-hand side F are approximated at the time
level tn+1. Thus, for each n ∈ {0, . . . , N − 1} we obtain the following
approximation of the IVP (2.1):

Un+1 − Un
∆t

= F (tn+1, Un+1),

U0 = u0.
(2.5)

Once again a simple rearrangement of the terms in Equation (2.5) yields
for each n ∈ {0, . . . , N − 1}

Un+1 −∆tF (tn+1, Un+1) = Un,

U0 = u0.
(2.6)

The numerical scheme given by Equation (2.5) or Equation (2.6) is known as
the Backward Euler method and is another example of a numerical scheme
for approximating solutions to the IVP (2.1). Note that the Backward Euler
method (2.6) can also be implemented as a time marching scheme

U0 7→ U1 7→ U2 7→ . . . Un 7→ Un+1 . . . 7→ UN .

That is, for each n ∈ {0, . . . , N − 1}, we can compute the approximate
solution Un+1 using the previous value Un and Equation (2.6). However, it
is important to note that Equation (2.6) is, in general, a non-linear system
of equations and therefore needs to be solved numerically using, e.g., the
Newton method. In particular, the Backward Euler method is also called
the Implicit Euler method.

2.4 Trapezoidal Method

Let us consider the IVP (2.1) and apply the Fundamental theorem of Cal-
culus to obtain for each n ∈ {0, . . . , N − 1}

u(tn+1)− u(tn) =

∫ tn+1

tn
u′(s)ds, (Fundamental Theorem of Calculus),

=

∫ tn+1

tn
F (s, u(s))ds, (IVP (2.1)).

(2.7)

Of course, in general, the function F may be highly non-linear and therefore
the integral in Equation (2.7) may be difficult to compute exactly. An

26

2.5. Mid-point Rule

alternative approach however, could be to approximate the integral using
numerical quadrature and one possibility is to use the so-called Trapezoidal
rule: ∫ b

a

f(x)dx ≈ (b− a)
(f(a) + f(b)

2

)
.

Equation (2.7) then reduces to

u(tn+1)− u(tn)

∆t
≈ 1

2

(
F
(
tn, u(tn)

)
+ F

(
tn+1, u(tn+1)

))
.

Therefore, using the approximation (2.2), i.e., for each n ∈ {0, . . . , N − 1}
setting Un ≈ u(tn), we obtain the following approximation of the IVP (2.1):

Un+1 − Un
∆t

=
1

2

(
F (tn, Un) + F (tn+1, Un+1)

)
,

U0 = u0.
(2.8)

Finally, rewriting Equation (2.8) in the time marching format, we obtain
for each n ∈ {0, . . . , N − 1}

Un+1 = Un +
∆t

2
F (tn, Un) +

∆t

2
F (tn+1, Un+1),

U0 = u0.
(2.9)

The numerical scheme for approximating solutions to the IVP (2.1) given by
Equation (2.8) or Equation (2.9) is known as the Trapezoidal method. Like
the Backward Euler method, the Trapezoidal method is also an example of
an implicit scheme.

Exercise 2.1 Show that the Trapezoidal method given by Equation (2.9) is
formally, the average of the Forward Euler method (2.4) and the Backward
Euler method (2.6).

2.5 Mid-point Rule

Recall that the Forward Euler method (Section 2.2) and the Backward Euler
method (Section 2.3) were derived using the forward difference approxima-
tion and the backward difference approximation for the time derivative u′

respectively. Of course these are not the only possibilities and a third option
is to use so-called central differences to approximate the time derivative u′.
Hence, for each n ∈ {0, . . . , N − 1} we approximate the time derivative u′

by

u′(tn) ≈ u(tn+1)− u(tn−1)

2∆t
≈ Un+1 − Un−1

2∆t
,

27

2.6. Numerical Experiments

and for each n ∈ {0, . . . , N − 1} we approximate the right-hand side F by

F (tn, u(tn)) ≈ F (tn, Un).

Using the above approximations we obtain the following approximation of
the IVP (2.1):

Un+1 − Un−1

2∆t
= F (tn, Un),

U0 = u0.
(2.10)

Finally, rearranging the terms in Equation (2.10), we obtain for each n ∈
{1, . . . , N − 1}

Un+1 = Un−1 + 2∆tF (tn, Un),

U0 = u0.
(2.11)

The numerical scheme given by Equation (2.10) or Equation (2.11) is known
as the Mid-point method1. The Mid-point method is again an example of an
explicit numerical scheme and like the Forward Euler, Backward Euler and
Trapezoidal methods, the Mid-point method (2.11) can also be implemented
as a time marching scheme. Indeed, given the values of the approximate
solution Un−1, Un we can compute the approximate solution at the next time
level Un+1 using a simple function evaluation involving Equation (2.11).

We observe however that in contrast to the previous schemes, the Mid-point
method uses the approximate solution at two previous time levels in order
to compute the approximate solution at the new time level. In particular,
this implies that we need to approximate U1 using some other numerical
scheme in order to begin time marching with the Mid-point scheme. An
attractive choice is the Forward Euler methods, which yields

U1 = u0 + ∆tF (0, u0).

2.6 Numerical Experiments

We consider the following scalar IVP:

u′(t) = −
(
u(t)− sin(t)

)
+ cos(t),

u(0) = 0.
(2.12)

1Beware that there are several different numerical schemes known as the Mid-point
method in the literature.

28

2.6. Numerical Experiments

The exact solution of the IVP (2.12) is given by u(t) = sin(t). We use
different numerical methods to obtain approximate solutions to this IVP
and use the exact solution to estimate the global errors associated with the
various numerical schemes we have introduced so far. Table 2.1 contains
our results and indicates that the Trapezoidal method is significantly more
accurate than the Forward Euler and the Backward Euler methods. Figure

FE BE TR

N Error Rate Error Rate Error Rate
20 0.083 0.074 0.004
40 0.040 1.04 0.038 0.96 0.001 2.00
80 0.020 1.02 0.019 0.98 2.57× 10−4 2.00
160 0.010 1.01 0.010 0.99 6.41× 10−5 2.00

Table 2.1: Error Table of the Forward Euler method, the Backward Euler method
and the Trapezoidal rule for the scalar IVP (2.12).

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
Forward Euler
Backward Euler
Trapezoidal Rule
Mid-point Method
Exact Solution

Figure 2.2: Approximate solution produced by different numerical methods for
the scalar IVP (2.12) using N=100 points.

2.2, which displays the plots of the approximate solutions produced by
these schemes, indicates that all the numerical schemes are able to produce
accurate solutions if the total number of time points N is sufficiently large.
On the other hand, Figure 2.3 also indicates that while using a smaller
N produces less accurate solutions, increasing the number of points does
improve the accuracy of the solution. This observation is confirmed by
the results of the errors displayed in Table 2.1. Next, we consider an IVP

29

2.6. Numerical Experiments

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
N= 20

N= 40

N= 80

N= 160

Exact

Figure 2.3: Approximate solutions produced by the Forward Euler method for
the scalar IVP (2.12).

involving a system of ODEs given by

θ′(t) = v,

v′(t) = − sin(θ),

θ(0) = 0,

v(0) = 1.

(2.13)

Recall that this is the so-called Pendulum equation introduced in the previ-
ous chapter. Once again, we use the Forward Euler method and the Back-
ward Euler methods to approximate solutions to this systems of ODEs.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N=50

N=100

N=200

N=400

N=1000

Reference

Figure 2.4: Plots of the approximate solution variable θ for the IVP (2.13) using
the Forward Euler method.

Our results indicate that a very small time step size ∆t or conversely a
very large number of points N are required to produce accurate solutions
to the IVP (2.13) using the first-order Forward Euler and Backward Euler
schemes.

30

2.7. Truncation Error

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

N=50

N=100

N=200

N=400

N=1000

Reference

Figure 2.5: Plots of the approximate solution variable v for the IVP (2.13) using
the Forward Euler method.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Forward Euler

Backward Euler

Reference

Figure 2.6: Plots of the approximate solution variable θ for the IVP (2.13) using
the Forward Euler and the Backward Euler methods with N=400 points.

2.7 Truncation Error

The discussion in Sections 2.2-2.5 has been limited to introducing differ-
ent numerical methods for approximating solutions to the IVP (2.1) and
there has been little comparative examination of these numerical methods.
Indeed, we have not described any systematic procedure to distinguish be-
tween these schemes or to establish the superiority of one scheme over an-
other. The next step therefore is to analyse these numerical methods in
more detail. For this purpose we first introduce the concept of the trunca-
tion error.

First, observe that the numerical schemes (2.3), (2.5), (2.8) and (2.10) are
all consistent with the form of the IVP (2.1). In order to calculate the
truncation error, we simply insert the exact solution u(t) of the IVP (2.1)
in the consistent forms of the numerical schemes (2.3), (2.5), (2.8) and
(2.10).

31

2.7. Truncation Error

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5
Forward Euler

Backward Euler

Reference

Figure 2.7: Plots of the approximate solution variable v for the IVP (2.13) using
the Forward Euler and the Backward Euler methods with N=400 points.

In other words, the truncation error for a numerical scheme is the error
made when the exact solution is inserted in the consistent form of numerical
methods. As an example, let us compute the truncation error of the Forward
Euler method using the Taylor expansions.

Example 2.2 Consider IVP (2.1) and the Forward Euler method (2.4).
Then the truncation error at each time level tn is given by

Tn =
u(tn+1)− u(tn)

∆t
− F (tn, u(tn))

=
u(tn)− u(tn) + ∆tu′(tn) + (∆t)2

2
u′′(tn) +O

(
(∆t)3

)
∆t

− F (tn, u(tn))

= u′(tn)− F (tn, u(tn))︸ ︷︷ ︸
=0 using IVP (2.1)

+
(∆t)

2
u′′(tn) +O

(
(∆t)2

)
= O(∆t).

Therefore the truncation error of the Forward Euler method is O(∆t).

As a second example, let us consider the Mid-point method.

Example 2.3 Consider IVP (2.1) and the Mid-point method (2.11). Then

32

2.8. One-Step Error

the truncation error at each time level tn is given by

Tn =
u(tn+1)− u(tn)

∆t
− u(tn−1)− u(tn)

∆t
− 2F (tn, u(tn))

=
u(tn+1)− u(tn−1)

∆t
− 2F (tn, u(tn))

=
u(tn)− u(tn) + ∆tu′(tn) + ∆tu′(tn) + (∆t)2

2
u′′(tn)− (∆t)2

2
u′′(tn)

∆t

+
(∆t)3

6
u′′′(tn) + (∆t)3

6
u′′′(tn) +O

(
(∆t)4

)
∆t

− 2F (tn, u(tn))

= 2
(
u′(tn)− F (tn, u(tn))

)︸ ︷︷ ︸
=0 using IVP (2.1)

+
(∆t)2

3
u′′′(tn) +O

(
(∆t)3

)

= O
(
(∆t)2

)
.

Therefore the truncation error of the Mid-point method is O
(
(∆t)2

)
.

Exercise 2.4 Show that the truncation error of the Backward Euler method
(2.6) is O(∆t).

Exercise 2.5 Show that the truncation error of the Trapezoidal method
(2.9) is O

(
(∆t)2

)
.

In general, if a numerical method for approximating solutions to the IVP
(2.1) has truncation error O

(
(∆t)k

)
for some integer k ∈ N, we say that

this numerical method is k-order accurate. Thus, for example, the Forward
Euler method is first-order accurate while the Mid-point method is second-
order accurate.

2.8 One-Step Error

The truncation error of a scheme is closely related to the concept of the
so-called one-step error of a numerical scheme.

Observe that the numerical schemes (2.4), (2.6), (2.9) and (2.11) are in the
so-called update form. The one-step error associated with these numerical
schemes is obtained by inserting the exact solution u(t) of the IVP (2.1)
in the update forms (2.4), (2.6), (2.9) and (2.11). Therefore, the one-step

33

2.8. One-Step Error

error for a numerical scheme is the error made when the exact solution is
inserted in the update form of the numerical scheme. As an example, let
us compute the one-step error of Forward Euler method using the Taylor
expansions.

Example 2.6 Consider IVP (2.1) and the Forward Euler method (2.4).
Then the one-step error at each time level tn is given by

Ln = u(tn+1)− u(tn)−∆tF
(
tn, u(tn)

)
= u(tn)− u(tn) + ∆tu′(tn) +

(∆t)2

2
u′′(tn) +O

(
(∆t)3

)
−∆tF

(
tn, u(tn)

)
= ∆t

(
u′(tn)− F

(
tn, u(tn)

)︸ ︷︷ ︸
=0 using IVP (2.1)

)
+

(∆t)2

2
u′′(tn) +O

(
(∆t)3

)
= O

(
(∆t)2

)
.

Therefore the one-step error of the Forward Euler method is O
(
(∆t)2

)
.

Exercise 2.7 Show that the one-step error of the Backward Euler method
(2.4) is O

(
(∆t)2

)
.

Exercise 2.8 Show that the one-step error of the Trapezoidal method (2.9)
is O

(
(∆t)3

)
.

We observe that there is a clear relation between the one-step error and
the truncation error for a one-step numerical method: A truncation error
of O

(
(∆t)k

)
implies a one-step error of O

(
(∆t)k+1

)
.

Finally, we remark that the title of the one-step error in the following way:
Assume that the exact solution of the IVP (2.1) at the time level tn+1 is
known and is given by u(tn+1). Recall that the update form of the Forward
Euler method for approximating the IVP (2.1) is given by

Un+1 = Un + ∆tF
(
tn, Un

)
.

Therefore, the error introduced by the Forward Euler method in this single
step is given by

u(tn+1)− Un+1 = u(tn+1)− u(tn)−∆tF
(
tn, u(tn)

)
= Ln.

(2.14)

Hence, the one-step error Ln is exactly the error introduced by a single step
of the numerical scheme and this nomenclature is therefore justified.

34

2.9. Global Error

2.9 Global Error

Both the truncation error (Section 2.7) and the one-step error (Section 2.8)
associated with a numerical scheme are examples of local errors. In other
words, both the truncation error and the one-step error compute the error
due to the approximation of the IVP by the numerical scheme at a single
time step. In this section we consider a heuristic argument for estimating
the global error associated with a numerical scheme.

Consider the IVP (2.1), let u(tN) and UN denote the exact solution of the
IVP and the approximate solution produced by a numerical scheme at the
final time level tN = T respectively. Then the global error of the numerical
scheme is defined as

EN := u(tN)− UN . (2.15)

Let us now consider the following heuristic argument: For each j ∈ {0, . . . , N−
1}, let Lj denote the one-step error at the time level tj. Then, the following
approximate estimate should hold:

EN ≈
N−1∑
j=0

Lj =⇒ |EN | ≤
N−1∑
j=0

|Lj|.

Now assume that the one-step error associated with the numerical scheme
satisfies

Lj = O
(
(∆t)q+1

)
,

for some q ∈ N. Then it holds that

EN ≈ O
(
(∆t)q+1

)
·N = O

(
(∆t)q+1

)
· T

∆t
≈ O

(
(∆t)q

)
Thus, if exactly the same amount of error is produced at each time step,
i.e., there is no amplification of errors over time steps, then the global error
scales like the truncation error. In particular this indicates that both the
Trapezoidal method and the Mid-point method should be more accurate
than the Forward Euler and Backward Euler methods.

We remark however, that the above heuristic calculation is very informal.
Indeed, it is by no means clear that there is no amplification of errors across
time steps, particularly for non-linear ODEs. These ideas are related to the
concept of stability of a numerical scheme and will be discussed in detail in
a later chapter.

35

2.10. Taylor Expansion Methods

2.10 Taylor Expansion Methods

In view of the discussion in Sections 2.7-2.9, the most obvious way to im-
prove the order of accuracy of a numerical method would be to use Tay-
lor expansions in order to reduce truncation errors. We demonstrate this
methodology using a simple example.

Example 2.9 Consider a scalar, autonomous IVP given by

u′(t) = f(u(t)),

u(0) = u0.
(2.16)

The Taylor expansions imply that for all time levels tn it holds that

u(tn+1) =u(tn) + ∆tu′(tn) +
(∆t)2

2
u′′(tn) +

(∆t)3

6
u′′′(tn)

+
(∆t)4

24
u(4)(tn) +O

(
(∆t)5

)
.

(2.17)

In addition, Equation (2.16) implies that u′(tn) = f(u(tn)) and therefore it
holds that

u′′(tn) = f ′(u(tn)) · f(u(tn)),

u′′′(tn) = f ′′(u(tn)) · f(u(tn))2 + f ′(u(tn))2f(u(tn)).

Next, we insert the expression for the derivatives into the Taylor expansions
(2.17) to obtain the following numerical method for approximating the IVP
(2.1):

Un+1 = Un + ∆tf(Un) +
(∆t)2

2
f(Un)f ′(Un) +

(∆t)3

6
f ′(Un)2f(Un)

+
(∆t)3

6

(
f ′′(Un)f(Un)2

)
,

U0 = u0.

(2.18)

The results of Exercise 2.10 imply that this numerical scheme could be a
third-order accurate numerical method.

Exercise 2.10 Show that the numerical scheme given by Equation (2.18)
has truncation error Tn = O

(
(∆t)3

)
and one-step error Ln = O

(
(∆t)4

)
.

Higher order numerical methods can be obtained in a similar fashion. Unfor-
tunately, using Taylor expansions and substituting higher order derivative
terms becomes increasingly difficult for non-autonomous ODEs or systems
of ODEs. We therefore employ different approaches to obtain higher-order
accurate numerical schemes for approximating the IVP (2.1), and we con-
sider these in the next chapter.

36

3 Higher-Order Methods for ODEs

Consider the following standard first-order initial value problem for ODEs:

u′(t) = F (t, u(t)),

u(0) = u0,
(3.1)

where u0 ∈ Rm is a constant, u : [0, T]→ Rm and F : [0, T]× Rm → Rm.

As mentioned briefly in Section 2.10, it is difficult to use Taylor expansions
in order to derive high-order accurate numerical schemes for approximat-
ing solutions to the IVP (3.1). We therefore require alternative means of
designing high-order accurate numerical methods. We begin by describing
a very popular family of high-order methods known as the Runge-Kutta
(RK) methods.

3.1 The Runge-Kutta-2 (RK-2) Method

We consider the IVP (3.1) in the time interval [0, T] where T ∈ (0,∞) is
some fixed time and we assume the time-discretisation described in Section
2.1. Then for all time levels tn, n ∈ {0, 1, . . . , N − 1}, it holds that

u(tn+1)− u(tn) =

∫ tn+1

tn
u′(s)ds, (Fundamental Theorem of Calculus),

=

∫ tn+1

tn
F (s, u(s))ds, (IVP (3.1)). (3.2)

We can then use numerical quadrature to approximate (3.2). In particular,
using the so-called mid-point rule yields∫ tn+1

tn
F (s, u(s))ds ≈ ∆tF

(
tn + ∆t/2, u(tn + ∆t/2)

)
. (3.3)

Of course the mid-point value of u is still unknown so we can perform a
further approximation of this value using the Forward Euler method, i.e.,

u(tn + ∆t/2) ≈ u(tn) + ∆t
2
F
(
tn, u(tn)

)
. (3.4)

37

3.1. The Runge-Kutta-2 (RK-2) Method

Finally, combining (3.3) and (3.4) we obtain a so-called two-stage numer-
ical scheme for approximating solutions to the IVP (3.1):

Y1 = Un,

Y2 = Un +
∆t

2
F (tn, Y1),

Un+1 = Un + ∆tF (tn + ∆t/2, Y2),

U0 = u0.

(3.5)

Then the numerical scheme given by (3.5) is termed the standard 2-stage
Runge-Kutta (RK-2) method.

The 2-stages refer to the calculation of the two terms Y1, Y2 in Equation
(3.5) in order to compute the solution at the next time level.

We remark that the RK-2 method (3.5) can be re-written in the update
form as

Un+1 = Un + ∆tF
(
tn + ∆t/2, Un + ∆t/2F (tn, Un)

)
,

U0 = u0,
(3.6)

and therefore represents a time marching scheme.

3.1.1 Order of Accuracy of the RK-2 Method

The order of accuracy of the the RK-2 methods can easily be determined
using the following strategy.

• Step 1 Consider an IVP involving a linear scalar ODE given by

u′(t) = λu(t),

u(0) = u0,

with exact solution given by u(t) = u0e
λt.

• Step 2 Compute the approximate solution at the time level tn+1 using
the update form (3.6) of the RK-2 scheme:

Un+1 =
(

1 + λ∆t+ λ2(∆t)2

2

)
Un.

• Step 3 Compute the corresponding one-step error of the RK-2 scheme:

Ln = u(tn+1)− Un+1 = u(tn)eλ∆t −
(

1 + λ∆t+ λ2(∆t)2

2

)
u(tn)

=
(
eλ∆t − 1− λ∆t− λ2(∆t)2

2

)
u(tn)

= λ3(∆t)3

6
u(tn) +O

(
(∆t)4

)
= O

(
(∆t)3

)
.

38

3.2. The Classical Runge-Kutta-4 (RK-4) Method

• Step 4 Based on the discussion in Section 2.9, we can conclude that
the RK-2 method (under the assumption of numerical ’stability’) has
global error of the order O

(
(∆t)2

)
and is therefore second-order ac-

curate.

• Step 5 The order of accuracy of the RK-2 method then carries over
from the simple linear scalar ODE to IVPs involving a general systems
of ODEs of the form (3.1).

3.2 The Classical Runge-Kutta-4 (RK-4) Method

An even higher-order accurate numerical method for approximating solu-
tions to the IVP (3.1) can be obtained by considering the following 4-stage
numerical method:

Y1 = Un,

Y2 = Un +
∆t

2
F (tn, Y1),

Y3 = Un +
∆t

2
F (tn + ∆t/2, Y2),

Y4 = Un + ∆tF (tn + ∆t/2, Y3),

Un+1 = Un +
∆t

6

(
F (tn, Y1) + 2F (tn + ∆t/2, Y2)

+ 2F (tn + ∆t/2, Y3) + F (tn + ∆t, Y4)
)
,

U0 = u0.

(3.7)

Then the numerical scheme given by (3.7) is termed the classical 4-stage
Runge-Kutta (RK-4) method.

We remark that this scheme can also be implemented as a time marching
scheme similar to the RK-2 numerical method.

3.2.1 Order of Accuracy of the RK-4 Method

In order to determine the order of accuracy of the RK-4 numerical scheme,
we follow the procedure outlined in Section 3.1.1. Hence we begin by con-
sidering an IVP involving a linear scalar ODE given by

u′(t) = λu(t),

u(0) = u0.

39

3.3. Numerical Experiments

Then, the RK-4 numerical method (3.7) implies that for each n ∈ {0, . . . , N−
1} it holds that

Y1 = Un,

Y2 = Un +
λ∆t

2
Un,

Y3 = Un +
λ∆t

2

(
Un +

λ∆t

2
Un
)

= Un +
λ∆t

2
Un +

λ2(∆t)2

4
Un,

Y4 = Un + λ∆t
(
Un +

λ∆t

2
Un +

λ2(∆t)2

4
Un
)

= Un + λ∆tUn +
λ2(∆t)2

2
Un +

λ3(∆t)3

4
Un,

and therefore the approximate solution to this IVP obtained using the RK-4
numerical method is given by

Un+1 = Un + λ∆tUn + λ2(∆t)2

2
Un + λ3(∆t)3

6
Un + λ4(∆t)4

24
Un

=
(

1 + λ∆t+ λ2(∆t)2

2
+ λ3(∆t)3

6
+ λ4(∆t)4

24

)
Un.

Thus, the one-step error associated with the RK-4 method is given by

Ln = u(tn+1)−
(

1 + λ∆t+ λ2(∆t)2

2
+ λ3(∆t)3

6
+ λ4(∆t)4

24

)
u(tn)

=
(
eλ∆t − 1− λ∆t− λ2(∆t)2

2
− λ3(∆t)3

6
− λ4(∆t)4

24

)
u(tn)

= O
(
(∆t)5

)
.

Hence, the RK-4 numerical method (3.7) (under the assumption of numer-
ical ’stability’) is expected to have global error of the order O

(
(∆t)4

)
and

therefore is expected to be fourth-order accurate.

3.3 Numerical Experiments

At this point, it would be instructive to test these higher order Runge-Kutta
schemes on the initial value problems introduced in Section 2.6. We first
consider the scalar IVP (2.12) given by

u′(t) = −
(
u(t)− sin(t)

)
+ cos(t),

u(0) = 0.

40

3.3. Numerical Experiments

In Section 2.6, we used the the Forward Euler, the Backward Euler, the
Trapezoidal Rule and the Mid-point method to approximate solutions to
this IVP. We repeat the same numerical experiments using the second-order
RK-2 method and the fourth-order RK-4 method.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Exact

RK2

RK4

Figure 3.1: Approximate solution produced by the RK-2 and RK-4 methods for
the scalar IVP (2.12) using N=100 points.

FE RK2 RK4

N Error Rate Error Rate Error Rate
20 0.083 0.011 3.93× 10−5

40 0.040 1.041 0.0023 2.176 2.04× 10−6 4.264
80 0.020 1.020 5.44× 10−4 2.087 1.16× 10−7 4.137
160 0.010 1.010 1.32× 10−4 2.043 6.92× 10−9 4.070

Table 3.1: Error Table of the Forward Euler method, the RK2 method and the
RK4 method for the scalar IVP (2.12).

Figure 3.1 displays the approximate solution produced by the RK-2 and
RK-4 methods using N = 100 points. Clearly, both the RK-2 and RK-4
schemes produce highly accurate solutions even for a smaller value of N .
Our conclusion is supported by the errors associated with both schemes,
which are displayed in Table 3.1. Indeed, the error of the RK-2 and the
RK-4 methods is significantly smaller than the error of the Forward Euler
method.

41

3.3. Numerical Experiments

Next, we consider the IVP (2.13) given by

θ′(t) = v,

v′(t) = − sin(θ),

θ(0) = 0,

v(0) = 1.

Once again we observe that both the RK-2 and the RK-4 method are able
to produce accurate solutions to this system of ODEs. Indeed, as shown
in Figures 3.2 and 3.3, the approximate solution produced by these Runge-
Kutta methods is significantly more accurate than the approximate solution
produced by the Forward Euler method.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Reference

FE

RK2

RK4

Figure 3.2: Plots of the approximate solution variable θ for the IVP (2.13) using
different numerical schemes with N=100 points.

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

Reference

FE

RK2

RK4

Figure 3.3: Plots of the approximate solution variable v for the IVP (2.13) using
different numerical schemes with N=100 points.

42

3.4. General Form of the Runge-Kutta Methods

3.4 General Form of the Runge-Kutta Methods

The RK-2 method (Section 3.1) and the RK-4 method (Section 3.2) sug-
gest a general form of the s-stage Runge-Kutta methods for approximating
solutions to the IVP (3.1):

Let s ∈ N be an integer, let {aij}si,j=1, {bi}si=1 and {ci}si=1 be real numbers
and define for all time levels tn, n ∈ {0, 1, . . . , N − 1}

Y1 = Un + ∆t
s∑
j=1

a1jF (tn + cj∆t, Yj),

Y2 = Un + ∆t
s∑
j=1

a2jF (tn + cj∆t, Yj),

...
...

...
...

Ys = Un + ∆t
s∑
j=1

asjF (tn + cj∆t, Yj),

Un+1 = Un + ∆t
s∑
j=1

bjF (tn + cj∆t, Yj).

U0 = u0.

(3.8)

Then the coefficients {aij}si,j=1, {bi}si=1 and {ci}si=1 uniquely specify an s-
stage Runge-Kutta method given by Equation (3.8).

For increased clarity and simplicity, the coefficients {aij}si,j=1, {bi}si=1 and
{ci}si=1 associated with an s-stage RK method are usually presented in
tabular format as a so-called Butcher Tableau. The Butcher Tableau for an
s-stage RK method is given by

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

...
cs as1 as2 . . . ass

b1 b2 . . . bs

(3.9)

We present some simple examples of Butcher tableaux for the Runge-Kutta
methods we have previously introduced.

Example 3.1 The Butcher tableau for the RK-2 method (3.5) is given by

0 0 0
1/2 1/2 0

0 1

43

3.5. Consistency Conditions for Runge-Kutta methods

Example 3.2 The Butcher tableau for the RK-4 method (3.7) is given by

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

3.5 Consistency Conditions for Runge-Kutta methods

In general, an arbitrary combination of the coefficients {aij}si,j=1, {bi}si=1

and {ci}si=1 will not specify a ‘consistent‘ s-stage Runge-Kutta method (3.8).
Instead we need to impose certain conditions on these coefficients in order to
ensure consistency. In particular, we must assume that for all i ∈ {1, . . . , s}

s∑
j=1

aij = ci, (3.10)

and moreover
s∑
j=1

bj = 1. (3.11)

Under the assumptions (3.10) and (3.11), the associated s-stage RK method
for approximating solutions to the IVP (3.1) is consistent.

The simplest way to see that the conditions (3.10) and (3.11) must be
satisfied in order to ensure consistency is to consider the simple case in
which the IVP (3.1) consists of a scalar ODE. Now recall from Section 1.5
that the non-autonomous IVP (3.1) can be rewritten as an autonomous
IVP by defining

w = [w1, w2], G = [F (w2, w1), 1],

and considering the following IVP:

w′(t) = G(w(t)),

w(0) = [u0, 1].
(3.12)

Then the autonomous IVP (3.12) is completely equivalent to the non-
autonomous IVP (3.1) in the sense that for every time level tn+1 = tn +
∆t, n ∈ {0, . . . , N − 1} it holds that

w1(tn+1) = u(tn+1),

w2(tn+1) = tn+1 = tn + ∆t.

44

3.6. Examples of Runge-Kutta methods

Then, using the s-stage Runge-Kutta method (3.8) to approximate the IVP
(3.12), we observe that for all n ∈ {0, . . . , N − 1} it holds that

Zi =

[
Zi
u

Zi
t

]
=

[
Un + ∆t

∑s
j=1 aijF

(
Zi
t , Z

i
u

)
tn + ∆t

∑s
j=1 aij

]
,

and therefore,

W n+1 =

[
W n+1

1

W n+1
2

]
=

[
Un + ∆t

∑s
j=1 bjF

(
Zi
t , Z

i
u

)
tn + ∆t

∑s
j=1 bj

]
,

(3.13)

We must now show that the approximate solutions produced by Equation
(3.13) is consistent with the approximate solutions produced by Equation
(3.8). In other words, we must show that for all time level tn+1 = tn +
∆t, n ∈ {0, . . . , N − 1}, the approximate solutions produced by Equation
(3.13) satisfy

W n+1
1 = Un+1,

W n+1
2 = tn+1 = tn + ∆t.

(3.14)

An inspection of Equation (3.13) indicates that the following condition must
be satisfied in order for the condition (3.14) to hold:

s∑
j=1

bj = 1.

Furthermore, by setting for each time level tn, n ∈ {1, . . . , N} and for each
i ∈ {1, . . . , s}

Zi
t = tn + ci∆t,

we obtain for each i ∈ {1, . . . , s} the condition

s∑
j=1

aij = ci.

These two conditions together ensure that for each time level tn+1, n ∈
{0, . . . , N−1} and for each i ∈ {1, . . . , s} it holds that Zi

u = Yi and W n+1
1 =

Un+1.

3.6 Examples of Runge-Kutta methods

We consider two main classes of Runge-Kutta methods in this section.

45

3.6. Examples of Runge-Kutta methods

• Explicit Runge-Kutta Methods
Consider an s-stage Runge-Kutta method of the form (3.8) for ap-
proximating solutions to the IVP (3.1) with the property that for all
i, j ∈ {1, . . . , s}

aij = 0 if j ≥ i.

Then this numerical method is termed an explicit RK method.

We observe that by definition of explicit RK schemes, each stage
Yi, i ∈ {2, . . . , s} can be computed using only the previous stages
Yj, j < i, and therefore an explicit RK method can be implemented
as a time marching scheme:

Un = Y1 7→ Y2 7→ Y3 7→ . . . 7→ Ys−1 7→ Ys 7→ Un+1.

We also remark that the matrix A = {aij}si,j=1 in the Butcher tableau
(3.9) associated with an explicit RK scheme has a strictly lower trian-
gular structure with zero diagonal entries. Examples of Explicit RK
schemes include the RK-2 and the RK-4 numerical methods.

• Diagonally Implicit Runge-Kutta (DIRK) Methods
Consider an s-stage Runge-Kutta method of the form (3.8) for ap-
proximating solutions to the IVP (3.1) with the property that for all
i, j ∈ {1, . . . , s}

aij = 0 if j > i,

and with the property that there exists some i ∈ {1, . . . , s} such that

aii 6= 0.

Then this numerical method is termed a diagonally implicit RK method.

We observe that by definition of diagonally implicit RK schemes, each
stage Yi, i ∈ {1, . . . , s} can be computed using the stages Yj, j ≤ i
and therefore computing each stage Yi requires the solution of a non-
linear equation of the form

Yi −∆taiiF (tn + ci∆t, Yi) = Un + ∆t
s∑

j=1,j<i

aijF (tn + ci∆t, Yi),

where tn is the current time level. In particular, this implies that we
must use some numerical method such as, e.g., Newton’s method to
find the approximate solution to one or more non-linear equations at
each time step.

46

3.7. Order of Accuracy of General RK Methods

Example 3.3 As a concrete example, we consider the 3-stage second-
order accurate DIRK method given by

Y1 = Un,

Y2 = Un +
∆t

4

(
F (tn, Y1) + F (tn +

∆t

2
, Y2)

)
,

Y3 = Un +
∆t

3

(
F (tn, Y1) + F (tn +

∆t

2
, Y2) + F (tn + ∆t, Y3)

)
,

Un+1 = Un +
∆t

3

(
F (tn, Y1) + F (tn +

∆t

2
, Y2) + F (tn + ∆t, Y3)

)
,

U0 = u0.

(3.15)

The Butcher Tableau for the DIRK-2 is therefore given by

0 0 0 0
1/2 1/4 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

We remark that the DIRK-2 method is also known as the Trapezoidal
Rule with the second order Backward Difference Formula (TR-BDF2).

3.7 Order of Accuracy of General RK Methods

Consider the IVP (3.1) and let an s-stage Runge-Kutta scheme for ap-
proximating solutions to this IVP be specified by the coefficients {aij}si,j=1,
{bi}si=1 and {ci}si=1.

As mentioned in Section 3.5, we require the consistency conditions (3.10)
and (3.11) to be satisfied in order to ensure that these approximate solutions
converge to the exact solution of the IVP (3.1). However, we also require
additional constraints in order to guarantee that this Runge-Kutta scheme
has truncation order of, say, O

(
(∆t)γ

)
where γ > 1.

In general, these additional constraints become increasingly complicated for
higher-order accurate Runge-Kutta scheme (γ ≥ 4) and these constraints
are therefore outside the scope of these notes. However, we consider the
simpler cases of γ = 2, 3 in this section.

Example 3.4 (Second-Order Runge Kutta Methods) In order to ob-
tain a second-order accurate numerical method, the following condition must

47

3.7. Order of Accuracy of General RK Methods

be imposed on the coefficients associated with a consistent s-stage Runge-
Kutta method:

s∑
j=1

bjcj =
1

2
. (3.16)

Exercise 3.5 Show that both the RK-2 and the DIRK-2 numerical methods
satisfy the condition (3.16). Conclude that both these schemes are at least
second-order accurate.

Example 3.6 (Third-Order Runge Kutta Methods) In order to ob-
tain a third-order accurate numerical method, in addition to the condition
(3.16), the following additional conditions must be imposed on the coeffi-
cients associated with a consistent s-stage Runge-Kutta method:

s∑
j=1

bjc
2
j =

1

3
,

s∑
j=1

s∑
i=1

biaijcj =
1

6
.

(3.17)

Exercise 3.7 Show that the RK-4 numerical method satisfies the condi-
tions (3.17) while both the RK-2 and the DIRK-2 numerical methods do
not satisfy the condition (3.17). Conclude that the RK-4 scheme is at least
third-order accurate while the RK-2 and DIRK-2 schemes are both exactly
second-order accurate.

We conclude this section by mentioning that, for explicit Runge-Kutta
methods, in order to obtain γ-order accuracy where γ < 5, it is neces-
sary to consider a method with at least γ stages. On the other hand in
order to obtain γ-order accuracy where γ ≥ 5, it is necessary to consider a
Runge-Kutta method with strictly more than γ stages.

48

4 Multi-Step Methods for Solving ODEs

The Runge-Kutta methods introduced in Chapter 3 can be used to numer-
ically approximate solutions to the initial value problem

u′(t) = F
(
t, u(t)

)
,

u(0) = u0.
(4.1)

However, these Runge-Kutta schemes are all examples of a multi-stage one-
step method. Indeed, we observe that only the approximate solution Un at
the time level tn is required in order to compute the approximate solution
Un+1 at the next time level tn+1.

One potential problem with multi-stage numerical schemes such as the RK-
4 method (3.7) is that a large number of function evaluations might be
required in order to compute the approximate solution at each time step.
In particular, this will be the case if the function u is a high-dimensional
vector or the number of stages s is large.

An alternative approach for obtaining high-order numerical methods is to
use multi-step methods. The basic idea behind multi-step methods is to
compute the approximate solution Un+γ at the time level tn+γ using the
approximate solutions Un, Un+1, . . . , Un+γ−1 at the previous γ time levels.

The simplest examples of such multi-step methods are the so-called linear
multi-step methods of the form

γ∑
j=0

αjUn+j = ∆t

γ∑
j=0

βjF
(
tn+j, Un+j

)
, (4.2)

for the coefficients {αj}γj=0 and {βj}γj=0. We observe that the γ-step method
(4.2) provides a linear relation between the approximate solution values at
γ time steps.

Special cases of the linear multi-step method (4.2) are the explicit multi-
step methods obtained by setting the coefficient βγ = 0. In general however,
(4.2) results in an implicit method.

49

4.1. Adams Methods

4.1 Adams Methods

The so-called Adams methods are a special class of the linear multi-step
methods (4.2) obtained by setting the coefficients

αγ = 1,

αγ−1 = −1,

αj = 0, ∀ j < γ − 1.

Thus (4.2) takes the form

Un+γ = Un+γ−1 + ∆t

γ∑
j=0

βjF
(
tn+j, Un+j

)
. (4.3)

Therefore, focusing on the special case of an autonomous ODE, i.e.,

F
(
t, u(t)

)
= F (u),

we obtain the following form of the Adams methods:

Un+γ = Un+γ−1 + ∆t

γ∑
j=0

βjF (Un+j). (4.4)

4.2 Adams-Bashforth Methods

The explicit versions of the Adams methods (4.4) are obtained by setting
the coefficient βγ = 0 and are therefore of the form

Un+γ = Un+γ−1 + ∆t

γ−1∑
j=0

βjF (Un+j). (4.5)

The explicit numerical methods given by (4.5) are known as Adams-Bash-
forth methods. The coefficients {βj}γ−1

j=0 in the Adams-Bashforth methods
(4.5) can be computed in an appropriate manner to ensure the correct order
of accuracy.

One possible approach to compute these coefficients is to consider the fol-
lowing calculation:

u(tn+γ)− u(tn+γ−1) =

∫ tn+γ

tn+γ−1

u′(s)ds

=

∫ tn+γ

tn+γ−1

F
(
u(s)

)
ds.

(4.6)

50

4.3. Adams-Moulton Methods

The integral given by Equation (4.6) can then be approximated using nu-
merical quadrature rules. In particular, we may approximate the function
F (u) using a polynomial p(t) of degree γ − 1, interpolated from the ap-
proximate solution values at the time levels tn, tn+1, . . . , tn+γ−1, and then
integrate the polynomial p(t). This calculation then results in the following
Adams-Bashforth methods for γ = 1, 2, 3:

(AB1) Un+1 = Un + ∆tF (Un),

(AB2) Un+2 = Un+1 + ∆t
2

(
− F (Un) + 3F (Un+1)

)
,

(AB3) Un+3 = Un+2 + ∆t
12

(
5F (Un)− 16F (Un+1) + 23F (Un+2)

)
.

We observe that the AB1 method is in fact the Forward Euler method (2.4).

4.3 Adams-Moulton Methods

The implicit version of the Adams methods (4.4) is obtained by setting
the coefficient βγ 6= 0. These implicit numerical schemes are known as the
Adams-Moulton methods.

Once again, the coefficients {βj}γj=0 in the Adams-Moulton methods can be
computed by repeating the calculation (4.6), approximating the function
F (u) with a polynomial q(t) of degree γ, interpolating the approximate
solution values at the time levels tn, tn+1, . . . , tn+γ, and then integrating
the polynomial q(t). Note that the interpolation here includes the values
Un+γ and tn+γ, in contrast to the Adams-Bashforth methods. The resulting
methods are then (γ+1)-order accurate. Some examples of Adams-Moulton
methods are given below:

(AM1) Un+1 = Un + ∆t
2

(
F (Un) + F (Un+1)

)
,

(AM2) Un+2 = Un+1 + ∆t
12

(
− F (Un) + 8F (Un+1) + 5F (Un+2)

)
,

(AM3) Un+3 = Un+2 + ∆t
24

(
F (Un)− 5F (Un+1) + 19F (Un+2) + 9F (Un+3)

)
.

We observe that the AM1 method is in fact the Trapezoidal rule (2.9).

51

4.4. Truncation Error

4.4 Truncation Error

The truncation error associated with a linear multi-step method of the form
(4.2) is defined as

Tn+γ =
1

∆t

(γ∑
j=0

αju(tn+j)−∆t

γ∑
j=0

βjF (u(tn+j))
)

=︸︷︷︸
(4.1)

1

∆t

(γ∑
j=0

αju(tn+j)−∆t

γ∑
j=0

βju
′(tn+j)

)
.

(4.7)

Taylor Expansions then imply that for all time levels it holds that

u(tn+j) = u(tn) + j∆tu′(tn) + j2(∆t)2

2
u′′(tn) + . . .+ jk(∆t)k

k!
u(k)(tn) + . . . ,

u′(tn+j) = u′(tn) + j∆tu′′(tn) + j2(∆t)2

2
u′′′(tn) + . . .+ jk(∆t)k

k!
u(k+1)(tn) +

Therefore, substituting these expressions into Equation (4.7) and collecting
terms we obtain

Tn+γ =
1

∆t

(γ∑
j=0

αj

)
u(tn) +

(γ∑
j=0

j(αj − βj)
)
u′(tn)

+ ∆t
(γ∑
j=0

(j2αj
2
− jβj

))
u′′(tn) + . . .

+ (∆t)k−1
(γ∑
j=0

(jkαj
k!
− jk−1βj

(k−1)!

))
u(k)(tn) +

In order to ensure consistency, me must impose the conditions

γ∑
j=0

αj = 0,

γ∑
j=0

jαj =

γ∑
j=0

βj.

Finally, a truncation error of order (∆t)k is obtained by setting

γ∑
j=0

jq

q!
αj =

γ∑
j=0

jq−1

(q − 1)!
βj, ∀ q ≤ k + 1.

52

4.5. Starting Values

4.5 Starting Values

Clearly, a linear γ-step numerical method of the form (4.2) requires γ start-
ing values U0, U1, . . . , Uγ−1 in order to be implemented as a time marching
scheme. The initial condition of the IVP (4.1) allows us to specify U0 but
we require some concrete method of specifying the other starting values.

The usual strategy to specify the remaining starting values U1, . . . , Uγ−1

is to use a Runge-Kutta method of order γ − 1 in the case of an explicit
Adams-Bashforth method, or to use a Runge-Kutta method of order γ in
the case of an implicit Adams-Moulton method.

We observe that in both cases, we employ an RK method with order of
accuracy exactly one less than that of the multi-step method. To observe
why it is sufficient to use an RK method of such order of accuracy, consider
the case of an explicit γ-step Adams-Bashforth method. We then employ
an RK method of order γ − 1. This leads to a one-step error of order γ.
Therefore, the total error due to the first γ steps (assuming that the method
is stable) will be of order (γ − 1) · O

(
(∆t)γ

)
and therefore the global error

of the multi-step method remains O
(
(∆t)γ

)
.

4.6 Concluding Remarks

We end this section by listing some advantages and disadvantages of using
multi-step methods to approximate solutions to the IVP (4.1).

• The major advantage of using explicit multi-step methods such as
Adams-Bashforth methods is that the right-hand side function F only
needs to be evaluated once at each time step. In contrast, Runge-
Kutta methods generally require multiple function evaluations at each
time step which adds to the computational complexity of such meth-
ods.

• On the other hand, a significant disadvantage of using multi-step
methods is that variable time-steps are difficult to implement. In
addition, as mentioned previously multi-step methods require several
starting values in order to be implemented as a time-marching scheme.

For further examples of multi-step methods, see Section 5.8 on the so-called
BDF methods.

53

5 Stability of Numerical Methods for
ODEs

Consider the following standard first-order initial value problem for ODEs:

u′(t) = F (t, u(t)),

u(0) = u0.
(5.1)

All the numerical methods discussed so far compute the approximate solu-
tion value UN of the IVP (5.1) at the time level tN = N∆t = T .

A numerical method is said to converge if it holds that

lim
∆t→0,
N ·∆t=T

UN = u(T) (5.2)

where u is the exact solution of the IVP (5.1).

Clearly, for a one-step method, the starting value coincides with the initial
condition u0 of the IVP (5.1). On the other hand, for a γ-step method, we
also have to account for the starting values U1, U2, . . . , Uγ−1. Therefore, we
require a γ-step method to satisfy the condition

lim
∆t→0

Uj(∆t) = u0, ∀ 0 ≤ j ≤ γ − 1. (5.3)

In light of this discussion, we have the following definition:

Definition 5.1 (Convergent Numerical Method) A numerical meth-
od for approximating solutions to the IVP (5.1) is said to be convergent
if the computed solution UN satisfies conditions (5.2) and (5.3) for every
fixed, final time T > 0.

Clearly, convergence is, at the very least, a key requirement for a ’good’
numerical method.

54

5.1. Convergence of Forward Euler for Linear ODEs

5.1 Convergence of Forward Euler for Linear ODEs

We examine the question of convergence in the case of a linear, scalar IVP:

u′(t) = λu(t) + g(t),

u(0) = u0

(5.4)

where λ ∈ R is some constant.

The simplest numerical method for approximating solutions to the IVP
(5.4) is the Forward Euler method (2.4):

Un+1 = Un + ∆t
(
λUn + g(tn)

)
=
(
1 + λ∆t

)
Un + ∆tg(tn),

U0 = u0.

(5.5)

It is immediately clear that the condition (5.2) is satisfied by the Forward
Euler method (5.5).

Our aim is to calculate the error given by

EN = u(tN)− UN .

We recall from Chapter 2 that the truncation error associated with the
Forward Euler method (5.5) is defined as

Tn =
u(tn+1)− u(tn)

∆t
− λu(tn)− g(tn). (5.6)

Exercise 5.2 Show that the truncation error (5.6) associated with the For-
ward Euler method (5.5) can be written as

Tn =
∆t

2
u′′(tn) +O

(
(∆t)3

)
. (5.7)

Next, we rewrite (5.6) as

u(tn+1) =
(
1 + λ∆t

)
u(tn) + ∆tg(tn) + ∆tTn. (5.8)

Equations (5.5) and (5.8) together then imply that

u(tn+1)− Un+1 =
(
1 + λ∆t

)(
u(tn)− Un

)
+ ∆tTn (5.9)

and therefore using the definition of the error En we obtain the following:

En+1 =
(
1 + λ∆t

)
En + ∆tTn. (5.10)

55

5.1. Convergence of Forward Euler for Linear ODEs

Thus, the error at a given time level depends on the error at the previous
time level and the truncation error.

Next, observe that we can rewrite (5.10) as

En = (1 + λ∆t)En−1 + ∆tTn−1

= (1 + λ∆t)
(
(1 + λ∆t)En−2 + ∆tTn−2

)
+ ∆tTn−1

= (1 + λ∆t)2En−2 + ∆t(1 + λ∆t)Tn−2 + ∆tTn−1.

(5.11)

Repeating this argument N times, we obtain

EN = (1 + λ∆t)NE0 + ∆t
N∑
m=1

(1 + λ∆t)N−mTm−1. (5.12)

Equation (5.12) clearly indicates the contribution of the local truncation
error to the global error. Indeed, we observe that the local truncation error
at each time level tm contributes an error of (1+λ∆t)N−mTm−1 to the global
error. Next, observe that for all ∆t > 0, it holds that

|1 + λ∆t| ≤ e|λ|∆t

=⇒ |1 + λ∆t|N ≤ eN |λ|∆t = e|λ|T , where N∆t = T.

Similarly, for all m < N it holds that

|1 + λ∆t|N−m ≤ e(N−m)|λ|∆t ≤ eN |λ|∆t ≤ e|λ|T . (5.13)

Therefore, we obtain the following upper bound for the global error (5.12):

|EN | ≤ |1 + λ∆t|N |E0|+ ∆t
N∑
m=1

|1 + λ∆t|N−m|Tm−1|

≤ e|λ|T
(
|E0|+ ∆t

N∑
m=1

max
m
|Tm−1|

)
.

Next, let
‖τ‖∞ = max

0≤m≤N−1
|Tm|.

Then it holds that

|EN | ≤ e|λ|T
(
|E0|+ T‖τ‖∞

)
.

Note that for the Forward Euler method (5.5) it holds that

‖τ‖∞ = max
1≤m≤N−1

|Tm| ≈ ∆t
2
‖u′′‖∞ = O(∆t).

56

5.2. Convergence of Forward Euler for Non-Linear ODEs

Finally, we observe that since E0 = 0, the global error of the Forward Euler
method is bounded by

|EN | ≤ Te|λ|TO(∆t),

and therefore
lim

∆t→0
EN → 0.

Hence, the Forward Euler method indeed satisfies condition (5.2) and is
therefore convergent. Furthermore, |EN | = O(∆t) implies that the For-
ward Euler is a first-order accurate method.

5.2 Convergence of Forward Euler for Non-Linear ODEs

We next consider the case of a non-linear, autonomous IVP:

u′(t) = F (u(t)),

u(0) = u0.
(5.14)

In order to ensure well-posedness of solutions to the IVP (5.14), we must
assume that the function F is Lipschitz continuous. Once again we use the
Forward Euler method (2.4) to approximate solutions to the IVP (5.14) and
obtain

Un+1 = Un + ∆tF (Un),

U0 = u0.
(5.15)

The truncation error associated with the Forward Euler method (5.15) is
then given by

Tn =
u(tn+1)− u(tn)

∆t
− F (u(tn)). (5.16)

and therefore it holds that

u(tn+1) = u(tn) + ∆tF (u(tn)) + ∆tTn. (5.17)

Equations (5.14) and (5.17) together then imply that

u(tn+1)− Un+1 = u(tn)− Un + ∆t
(
F (u(tn))− F (Un)

)
+ ∆tTn

and therefore using the definition of the error En we obtain the following:

En+1 = En + ∆t
(
F (u(tn))− F (Un)

)
+ ∆tTn.

We thus obtain the following upper bound for the error:

‖En+1‖ ≤ ‖En‖+ ∆t‖F (u(tn))− F (Un)‖+ ∆t‖Tn‖ (5.18)

57

5.2. Convergence of Forward Euler for Non-Linear ODEs

where ‖ · ‖ is a vector norm.

Next, since the function F is Lipschitz continuous, there exists some con-
stant L ∈ R such that

‖F (u(tn))− F (Un)‖ ≤ L‖u(tn)− Un‖ ≤ L‖En‖.

Hence, it holds that

‖En+1‖ ≤
(
1 + ∆tL

)
‖En‖+ ∆t‖Tn‖. (5.19)

Therefore, the error associated with the Forward Euler method (5.15) at
the time level tn is bounded by

‖En‖ ≤
(
1 + ∆tL

)
‖En−1‖+ ∆t‖Tn−1‖. (5.20)

We observe that Inequality (5.20) is extremely similar to Equation (5.10).
Indeed, apart from the fact that (5.20) is an inequality and makes use of
a vector norm, the two expressions are virtually identical. We therefore
proceed in a similar fashion as before and iterate Inequality (5.20) N times
to obtain

‖EN‖ ≤
(
1 + ∆tL

)N‖E0‖+ ∆t
N∑
m=1

(
1 + ∆tL

)N−m‖Tm−1‖. (5.21)

Next, the bound (5.13) and Equation (5.21) together imply that

‖EN‖ ≤ eLT
(
‖E0‖+ T‖τ‖∞

)
(5.22)

where
‖τ‖∞ = max

0≤m≤N−1
‖Tm‖.

Finally using the fact that E0 = 0 and ‖τ‖∞ = O(∆t) we obtain

‖EN‖ ≤ TeLT · O(∆t).

Therefore, it holds that
lim

∆t→0
EN = 0

and therefore the Forward Euler method is convergent in the sense of (5.2)
for the general IVP (5.14).

58

5.3. Convergence of Consistent One-Step Methods

5.3 Convergence of Consistent One-Step Methods

It turns out that explicit one-step methods for approximating the IVP (5.1)
can be written in the following general form:

Un+1 = Un + ∆tΦ(Un, t
n,∆t),

U0 = u0.
(5.23)

Example 5.3 Consider the 2-stage standard Runge-Kutta method (3.5).
Recall that the RK2 method can be written in the form (3.6):

Un+1 = Un + ∆tF
(
tn + ∆t

2
, Un + ∆t

2
F (tn, Un)

)
,

U0 = u0.

Hence, the RK2 method can be written in the form (5.23) with

Φ(Un, t
n,∆t) = F

(
tn + ∆t

2
, Un + ∆t

2
F (tn, Un)

)
.

We define a numerical method of the form (5.23) to be consistent if it holds
for all time t that

Φ
(
u(t), t, 0

)
= F

(
t, u(t)

)
.

Exercise 5.4 Show that the 2-stage standard Runge-Kutta method (3.5) is
consistent.

We can now readily define the truncation error of a consistent one-step
method as

Tn :=
u(tn+1)− u(tn)

∆t
− Φ(u(tn), tn,∆t). (5.24)

We assume that the function Φ is Lipschitz in u. Then Equations (5.23)
and (5.24) together imply that

u(tn+1)−Un+1 = u(tn)−Un+∆t
(

Φ(u(tn), tn,∆t)−Φ(Un, t
n,∆t)

)
+∆tTn.

Lipschitz continuity of the function Φ then implies that

‖Φ(u(tn), tn,∆t)− Φ(Un, t
n,∆t)‖ ≤ L‖u(tn)− Un‖,

and therefore the error En associated with the numerical method (5.23)
satisfies the bound

‖En+1‖ ≤
(
1 + ∆tL

)
‖En‖+ ∆t‖Tn‖,

59

5.4. Why Convergence is Not Enough

which is identical to the inequality bound (5.19).

Hence, it holds that
‖EN‖ ≤ TeLT · O(∆t),

and therefore,
lim

∆t→0
EN = 0.

This establishes that general explicit one-step methods of the form (5.23) are
convergent if they are consistent. We remark that the convergence of multi-
step methods is considerably more difficult to establish and is outside the
scope of these notes. In addition, note that a truncation error of O

(
(∆t)p

)
leads to |EN | = O

(
(∆t)p

)
, and thus the numerical method is pth-order

accurate.

5.4 Why Convergence is Not Enough

Convergence in the sense of (5.2) is merely a necessary condition for a ’good’
numerical method but is by no means a sufficient condition. The following
example helps illustrate this.

Example 5.5 Consider the scalar IVP

u′(t) = λ
(
u(t)− sin(t)

)
+ cos(t),

u(0) = 0,
(5.25)

where λ ∈ R is a constant.

Exercise 5.6 Show that u(t) = sin(t) is the unique solution of the IVP
(5.25) for any value of the constant λ.

We compute the numerical solution of the IVP (5.25) using the Forward
Euler method (2.4) for λ = −100 and different values of the time step ∆t
up to the final time T = 10. Our results are displayed in Table 5.1.
Clearly, the global error associated with the Forward Euler method for dif-
ferent values of ∆t is very large. Indeed, Figure 5.1 displays the results for
N = T

∆t
= 300 points and indicates that the approximate solution contains

very large oscillations and seems to blow up.
The behaviour of the Forward Euler method is very surprising considering
that we have shown that this method produces approximate solutions that
converge to the exact solution as ∆t → 0. Interestingly, this result is still
true for very small values of the time step ∆t. Indeed Figure 5.2 displays
the results for N = ∆t

T
= 400 points and indicates that the approximate

60

5.4. Why Convergence is Not Enough

N Error |1 + λ∆t|
100 6.70× 1066 5.283
200 1.04× 1059 2.141
300 1.79× 105 1.094
320 2.29× 10−6 0.964
400 3.74× 10−7 0.571

Table 5.1: Error Table for the Forward Euler method for the stiff IVP (5.25).

0 1 2 3 4 5 6 7

×105

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.1: Approximate solution produced by the Forward Euler method for the
stiff IVP (5.25) using N=300 points.

solution in this case is very close to the exact solution as evidenced by a
global error of 3.74× 10−7.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
Forward Euler, N=400
Exact Solution

Figure 5.2: Approximate solution produced by the Forward Euler method for the
stiff IVP (5.25) using N=400 points.

Table 5.1 contains a clue pertaining to this behaviour. Based on our numer-
ical experiments it seems that the value ‖1 + λ∆t‖ plays a significant role

61

5.5. Absolute Stability

in the value of the global error associated with the Forward Euler method
as ∆t is varied.

Finally, we remark that the Backward Euler method is able to produce
accurate solutions to the IVP (5.25) even for very small values of the number
of points N , as shown in Figure 5.3.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
N=20

N=40

N=80

N=160

Exact

Figure 5.3: Approximate solutions produced by the Backward Euler method for
the stiff IVP (5.25).

5.5 Absolute Stability

The discussion in the previous sections provides motivation for a stronger
notion of stability for numerical methods. Consider the following model
IVP:

u′(t) = λu(t),

u(0) = u0

(5.26)

where λ ∈ R− is a negative constant. Note that the exact solution of the
IVP (5.26) is given by u(t) = u0e

λt and therefore the solution will decay
rapidly to zero for any initial condition as long as λ < 0.

Applying the Forward Euler method (2.4) to approximate solutions to the
IVP (5.26) leads to

Un+1 =
(
1 + λ∆t

)
Un. (5.27)

We say that the Forward Euler method (2.4) is absolutely stable if it holds
that

|1 + λ∆t| ≤ 1, (5.28)

or equivalently if it holds that

|Un+1| ≤ |Un|. (5.29)

62

5.5. Absolute Stability

Remark 5.7 We observe that this notion of stability only makes sense
when the constant λ ≤ 0 as the exact solution in this case is monotoni-
cally decreasing.

Equation (5.28) implies that the time step ∆t must be chosen such that

−2 ≤ λ∆t ≤ 0 (See Figure 5.4)

Hence, the Forward Euler method (2.4) is absolutely stable only if the time
step ∆t, relative to the constant λ, is sufficiently small. This provides
justification for the results of our numerical experiments in Section 5.4.

λ∆t
-5 -4 -3 -2 -1 0 1 2 3 4 5

Unstable Region
 Stable Region

Figure 5.4: Stable and Unstable regions of λ∆t for the Forward Euler scheme.

5.5.1 Absolute Stability of Backward Euler Method

Applying the Backward Euler method (2.6) to approximate solutions to the
IVP (5.26) leads to

Un+1 − Un
∆t

= λUn+1

=⇒ Un =
(
1− λ∆t

)
Un+1

=⇒ Un+1 =
1

1− λ∆t
Un.

Thus, the Backward Euler method (2.6) is absolutely stable if Equation
(5.29) holds, i.e., if it holds that

1

|1− λ∆t|
≤ 1, (5.30)

or equivalently if it holds that

λ∆t ∈ (−∞, 0] ∪ [2,∞) (See Figure 5.5). (5.31)

63

5.5. Absolute Stability

The large stability region for the Backward Euler scheme given by (5.31)
indicates that the Backward Euler scheme remains stable even for large
values of the time step ∆t. This explains why the Backward Euler method
performs well in the numerical experiments considered in the previous sec-
tions.

λ∆t
-5 -4 -3 -2 -1 0 1 2 3 4 5

Unstable Region
 Stable Region

Figure 5.5: Stable and Unstable regions of λ∆t for the Backward Euler scheme.

5.5.2 Absolute Stability of Trapezoidal Rule

Applying the Trapezoidal rule (2.9) to approximate solutions to the IVP
(5.26) leads to

Un+1 − Un
∆t

= 1
2

(
λUn + λUn+1

)
=⇒

(
1− λ∆t

2

)
Un+1 =

(
1 + λ∆t

2

)
Un

=⇒ Un+1 =
1 + λ∆t

2

1− λ∆t
2

Un.

Thus, the Trapezoidal rule (2.9) is A-stable if Equation (5.29) holds, i.e., if
it holds that ∣∣∣∣∣1 + λ∆t

2

1− λ∆t
2

∣∣∣∣∣ ≤ 1. (5.32)

Exercise 5.8 Show that a sufficient condition for the stability Equation
(5.32) to hold is that λ∆t ∈ (−∞, 0].

Stability regions for more complicated Runge-Kutta and multi-step meth-
ods can similarly be computed.

64

5.6. Absolute Stability of Systems of ODEs

5.6 Absolute Stability of Systems of ODEs

Consider the linear system of ODEs

u′(t) = Au(t), (5.33)

where A ∈ Rm×m is a constant diagonalisable matrix (see Section 1.6).
Recall that the matrix A can then be written as

A = RΛR−1,

where
Λ = diag(λ1, λ2, . . . , λm),

and

R =

[
r1

∣∣∣∣∣r2

∣∣∣∣∣ . . .
∣∣∣∣∣rm
]
,

with (λi, ri), i = 1, . . . ,m the ith eigenvalue and eigenvector of the matrix
A respectively, i.e., for all i = 1, . . . ,m it holds that

Ari = λiri.

Next, similar to Section 1.6, we may use the substitution w = R−1u to
rewrite Equation (5.33) as

w′(t) = Λw(t).

Thus the system of ODEs (5.33) decouples into m scalar ODEs of the form

w′(t) = λiwi, i = 1, . . . ,m. (5.34)

Then, applying the Forward Euler method (2.4) to the system of ODEs
(5.33) and using I to denote the m×m identity matrix, we obtain

Un+1 =
(
I + ∆tA

)
Un

=⇒ Un+1 =
(
I + ∆tRΛR−1

)
Un

=⇒ R−1Un+1 = R−1Un + ∆tΛR−1Un.

Therefore, letting Wn = R−1Un, we obtain

Wn+1 = Wn + ∆tΛWn.

Since Λ is a diagonal m×m matrix, we obtain m-scalar, decoupled difference
equations of the form

win+1 = win + ∆tλiw
i
n, i = 1, . . . ,m. (5.35)

65

5.7. Stiff Problems

Thus, absolute stability of a numerical method for approximating solutions
to the system of ODEs (5.33) can be ensured by enforcing the following
condition:

|win+1| ≤ |win|, ∀ i = 1, . . . ,m. (5.36)

For the Forward Euler method, the condition (5.36) is satisfied if for all
i = 1, . . . ,m it holds that

|1 + ∆tλi| ≤ 1 (5.37)

Note however, that the eigenvalues {λi}mi=1 of the matrix A are, in general,
complex-valued. Thus, stability regions for various numerical schemes are
drawn in the complex plane. Some examples of such complex stability
regions are given in Figure 5.6. Stability regions for more complicated
Runge-Kutta and multi-step methods can also be drawn.

5.7 Stiff Problems

The discussion on stability in the previous section indicates that Forward
Euler method can require the use of very small time steps, particularly if
the absolute value of an eigenvalue of the system (5.33) is very large. On the
other hand, the Backward Euler method and the Trapezoidal rule remain
stable even for large values of the time step ∆t.

A natural question to ask therefore is whether such problems involving very
large (negative) eigenvalues actually occur. The simplest example of such
problems is the model IVP (5.25) with a large negative value of the constant
λ. We have already seen that the Forward Euler method and the Backward
Euler method produce approximate solutions to the IVP (5.25) that are
completely different.

A more practical example is provided by the chemical kinetics model of
Section 1.3.5, which models the reactions

A
rate of reaction k1−−−−−−−−−−→ B

rate of reaction k2−−−−−−−−−−→ C.

and is given by the system of ODEs

u′(t) = Au(t),

where

u =

u1

u2

u3

 , A =

 −k1 0 0
k1 −k2 0
0 k2 0

 .
66

5.7. Stiff Problems

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Stability Region (Shaded)

(a) Forward Euler method

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Stability Region (Shaded)

(b) Backward Euler method

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Stability Region (Shaded)

(c) Trapezoidal method
Figure 5.6: Stability regions of several methods

The eigenvalues of the matrix A are then given by 0,−k1,−k2 and in many
problems in chemistry, k1 � k2. For instance, we could have k1 = 106, k2 =
1. Such a problem is a classic example of so-called stiff problems.

In such a case, the Forward Euler method requires the use of a very small
time step ∆t of O(10−6), whereas the Backward Euler method works even
for a large time step ∆t of O(1).

Methods whose stability region contains the entire negative (real) half of
the complex plane, i.e., {z ∈ C : Rez ≤ 0}, are called A-stable numerical

67

5.8. BDF Methods

methods. Examples of such methods include implicit schemes such as the
Backward Euler method and the Trapezoidal method. A-stable methods
are particularly well-suited for approximating solutions to stiff problems, as
indicated by our results in the previous section.

5.8 BDF Methods

Higher order versions of the Backward Euler method are provided by the
Backward difference formula (BDF) methods, which are of the general form

α0Un + α1Un+1 + . . .+ αγUn+γ = ∆tβγF (Un+γ) (5.38)

where F (u) = u′.

Thus, Equation (5.38) computes an approximation of the time derivative
at the time level tn+γ using the approximate solution values at the pre-
vious γ time levels, tn, tn+1, . . . , tn+γ−1. This provides justification for the
name BDF methods. Clearly, the Backward Euler method (2.6) is a BDF-1
method. Other examples of BDF methods include

BDF-2 3Un+2 − 4Un+1 + Un = 2∆tF (Un+2),

BDF-3 11Un+3 − 18Un+2 + 9Un+1 − 2Un = 6∆tF (Un+3).

BDF methods are well suited for stiff problems, particularly in chemistry.

68

6 The Poisson Equation

Let Ω ⊆ Rn, (n = 1, 2, 3) be an open set with boundary ∂Ω as shown in
Figure 6.1.

Ω

∂Ω

Figure 6.1: Example of the domain set Ω with boundary ∂Ω.

Let u : Ω → R be an unknown scalar or vector function. We denote the
derivatives of u in the following way:

∇u =
(
∂u
∂x1
, . . . , ∂u

∂xn

)
,

D2u denotes the second derivative of u,

Dku denotes the kth derivative of u.

Then a partial differential equation (PDE) is an equation of the form

F
(
x, u,∇u, D2u, Dku, . . .

)
= 0 (6.1)

where F is some general, known function.

The task of solving Equation (6.1) therefore amounts to finding the un-
known function u, given a complicated, non-linear relationship between a
combination of its derivatives.

PDEs are ubiquitous in models in physics and engineering. We will study
some of the most important PDEs that arise in engineering and design
efficient numerical methods to solve them.

69

6.1. Derivation of Poisson’s Equation

6.1 Derivation of Poisson’s Equation

An important example of a PDE is the so-called Poisson’s Equation given
by

−∆u = f (6.2)

where u : Ω→ R is an unknown scalar-valued function, f : Ω→ R is a given
source function and ∆ is the so-called Laplace operator given by

∆u =
n∑
i=1

uxixi ,

i.e., the trace of D2u.

6.1.1 A Variational Principle

In many problems in physics, the mathematical model boils down to choos-
ing one configuration of a system from amongst many possible configura-
tions. The sought for configuration is usually a minimiser (or maximiser)
for some variational problem as in the following example.

Consider an elastic body defined on a domain Ω. The elastic body can, for
instance, be a membrane clamped at the boundary.

The unknown in this case is the vertical displacement u = u(x), x ∈
Ω. Furthermore, clamping at the boundary ∂Ω implies so-called Dirichlet
boundary conditions

u|∂Ω ≡ 0.

The total elastic energy can then be modelled by

J(u) =
1

2

∫
Ω

|∇u|2dx−
∫

Ω

ufdx, (6.3)

where f is some known, load function.

The sought for configuration of the system is a minimiser of the energy
J given by (6.3). We remark that the function J is termed the Dirichlet
energy.

As in calculus, we can calculate the minimiser of the energy J by solving
the so-called Euler-Lagrange equations:

J ′(u, v) = lim
τ→0

J(u+ τv)− J(u)

τ
= 0.

70

6.1. Derivation of Poisson’s Equation

We therefore perform the following (formal) calculation:

J(u+ τv)− J(u)

τ
=

1

τ

(1

2

∫
Ω

|∇(u+τv)|2dx− 1

2

∫
Ω

|∇u|2dx−τ
∫

Ω

fvdx
)
.

Next, we use the fact that |∇w|2 = 〈∇w,∇w〉 where 〈·, ·〉 is the usual inner
product in Rn, and we obtain

J(u+ τv)− J(u)

τ
=

1

τ

(
1

2

∫
Ω

|∇u|2dx+ τ

∫
Ω

〈∇u,∇v〉dx

+
τ 2

2

∫
Ω

|∇v|2dx− 1

2

∫
Ω

|∇u|2dx− τ
∫

Ω

fvdx

)
=

∫
Ω

〈∇u,∇v〉dx+
τ

2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx.

Taking the limit we obtain

lim
τ→0

J(u+ τv)− J(u)

τ
=

∫
Ω

〈∇u,∇v〉dx−
∫

Ω

fvdx.

and hence,

J ′(u, v) =

∫
Ω

〈∇u,∇v〉dx−
∫

Ω

fvdx.

Therefore, the Euler-Lagrange equations are given by∫
Ω

〈∇u,∇v〉dx−
∫

Ω

fvdx = 0.

Next, using integration by parts we obtain

−
∫

Ω

v∆udx−
∫

Ω

vfdx+

∫
∂Ω

v
∂u

∂ν
ds(x) = 0,

where ∂u
∂ν

= ∇u·ν, and ν is the unit outward vector, normal to the boundary
∂Ω.

Using the fact that any admissible configuration is clamped at the boundary,
i.e., v ≡ 0 on ∂Ω, we therefore obtain∫

Ω

(−∆u− f)vdx = 0, ∀v.

71

6.2. The Poisson Equation in One-Space Dimension

Therefore,

−∆u = f,

u|∂Ω ≡ 0.
(6.4)

We have thus derived Poisson’s equation (6.2).

We remark that Poisson’s equation (6.2) can also be derived as a steady
state of the heat equation (see Chapter 10) as well as the potential flow
equations of fluid dynamics.

6.2 The Poisson Equation in One-Space Dimension

In one space dimension, with the domain Ω = [0, 1], the Poisson Equation
(6.4) takes the form

−u′′(x) = f(x), ∀ x ∈ (0, 1),

u(0) = u(1) = 0.
(6.5)

Note that Equation (6.5) is an example of a two-point boundary value
problem (BVP) for ODEs.

It is possible to find an explicit formula for the solutions to the BVP (6.5).
Indeed, using the Fundamental theorem of Calculus, we may write

u′(y) = c2 +

∫ y

0

u′′(z)dz (c2 is a constant)

= c2 −
∫ y

0

f(z)dz (using (6.5)),

and furthermore

u(x) = c1 +

∫ x

0

u′(y)dy (c1 is a constant)

= c1 + c2x−
∫ x

0

∫ y

0

f(z)dzdy.

(6.6)

We want to write this solution in a different form. Thus, let F (y) =∫ y
0
f(z)dz so that F ′(y) = f(y). Integration by parts then implies that∫ x

0

F (y)dy
y′=1
=

∫ x

0

y′F (y)dy = xF (x)−
∫ x

0

yF ′(y)dy

= x

∫ x

0

f(y)dy −
∫ x

0

yf(y)dy

=

∫ x

0

(x− y)f(y)dy.

72

6.2. The Poisson Equation in One-Space Dimension

Hence, Equation (6.6) can be rewritten as

u(x) = c1 + c2x−
∫ x

0

(x− y)f(y)dy. (6.7)

In addition, the constants c1, c2 can be determined using the boundary
conditions in (6.5):

0 = u(0) = c1,

0 = u(1) = c2 −
∫ 1

0

(1− y)f(y)dy

=⇒ c2 =

∫ 1

0

(1− y)f(y)dy.

Hence, the solution u of Equation (6.5) is given by

u(x) =

∫ 1

0

x(1− y)f(y)dy −
∫ x

0

(x− y)f(y)dy. (6.8)

Next, we define

G(x, y) =

{
y(1− x) 0 ≤ y ≤ x

x(1− y) x ≤ y ≤ 1,
(6.9)

and we can check that (6.8) is equivalent to

u(x) =

∫ 1

0

G(x, y)f(y)dy. (6.10)

The function G in Equation (6.10) is termed a Green’s function and provides
an explicit formula for the solution to the 1-D Poisson equation (6.5).

6.2.1 Limitations of the Green’s Function Representation

Unfortunately, the explicit formula (6.10) is not very useful due to the
following reasons:

• The integral in (6.10) is not possible to evaluate exactly for compli-
cated source (load) functions f . In such cases, a numerical quadrature
rule would need to be used.

73

6.3. Finite Difference Methods

• A slight perturbation in the form of the Poisson equation may result in
our inability to find a solution formula similar to (6.10). For instance,
many applications use a modified version of the Poisson equation given
by

−
(
a(x)u′(x)

)′
+b(x)u′(x) + c(x)u(x) = f(x), ∀ x ∈ (0, 1)

u(0) = u(1) = 0,
(6.11)

where a, b, c are coefficient functions. It is not possible to find explicit
formulae for solutions to (6.11) even in the simple case b(x) ≡ 0 and
c(x) = c.

• Green’s function representations are not available in the case of the
two-dimensional and three-dimensional Poisson equation, except for
very simple domains such as a ball.

6.3 Finite Difference Methods

Given the limitations of explicit solution formulae, we must resort to nu-
merical methods to approximate solutions to the Poisson equation. The
simplest numerical method is to approximate the 1-D Poisson equation
(6.5) using the so-called finite difference method.

6.3.1 Discretising the domain

Let ∆x > 0 and let N = 1
∆x
− 1. Then we discretise the domain [0, 1] into

N + 2 points by setting

x0 = 0, xN+1 = 1, xj = j∆x, j = 1, . . . , N.

Figure 6.2 displays an example of the discretised domain.

Figure 6.2: An example of a one-dimensional mesh for the domain Ω = (0, 1).

74

6.3. Finite Difference Methods

6.3.2 Discretising the Derivatives

Our aim will be to approximate the function u, which solves Equation (6.5),
with point values, i.e., by setting

uj ≈ u(xj),

and similarly, we define

fj = f(xj).

Hence, we need to approximate the derivatives that appear in Equation
(6.5) with finite differences. The obvious choice is to use a simple central
difference approximation of the second derivative of u given by

u′′(xj) ≈
uj+1 − 2uj + uj−1

∆x2
. (6.12)

Exercise 6.1 Check that for a sufficiently smooth function u : R → R,
there exists some constant C ∈ R such that for all ∆x > 0 it holds that∣∣∣∣u′′(xj)− u(xj + ∆x)− 2u(xj) + u(xj −∆x)

∆x2

∣∣∣∣ ≤ C∆x2. (6.13)

6.3.3 The finite Difference Scheme

A finite difference scheme for approximating (6.5) is then given by

−uj+1 + 2uj − uj−1 = ∆x2fj, ∀ j = 1, . . . , N.

Furthermore, using the boundary condition u0 = u(0) = 0, we obtain

2u1 − u2 = ∆x2f1,

and similarly, using the boundary condition uN+1 = u(1) = 0, we obtain

−uN−1 + 2uN = ∆x2fN .

Then, introducing the vectors

U =
[
u1, u2, . . . , uN

]ᵀ
, F = ∆x2

[
f1, f2, . . . , fN

]ᵀ
,

we observe that the above finite difference scheme can be recast as the
following matrix equation:

AU = F, (6.14)

75

6.4. Numerical Results

where A is the N ×N matrix given by

A =


2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 . . . 0 −1 2

 .

6.3.4 Solving the Matrix Equation

The previous section indicates that the finite difference scheme for approxi-
mating solutions to the Poisson equation (6.5) reduces to solving the matrix
equation (6.14). We observe that the matrix A is tridiagonal and diago-
nally dominant, and is therefore invertible. The matrix equation (6.14) can
therefore be solved using methods learnt in numerical linear algebra.

6.4 Numerical Results

As a first numerical example, we consider the following two-point boundary
value problem:

−u′′(x) = (3x+ x2) exp(x),

u(0) = u(1) = 0.
(6.15)

It can be show that the exact solution to the BVP (6.15) is given by u(x) =
x(1 − x) exp(x). We use the one-dimensional finite difference method to
approximate solutions to this problem for different values of the number of
mesh points N .

Figure 6.3 displays our results and indicates that the finite difference method
can approximate solutions to the BVP (6.15) very well. Indeed, the associ-
ated errors given in Table 6.1 indicate that the approximate solutions seem
to converge to the exact solution as the number of mesh points is increased.

In fact, using a discrete version of the Green’s function representation, it
can be proven that for any ∆x > 0, the following stability estimate holds:

‖u∆x‖∞ ≤
1

8
‖f∆x‖∞,

where
u∆x =

[
u1, u2, . . . , uN

]
, f∆x =

[
f1, f2, . . . , fN

]
,

76

6.4. Numerical Results

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Exact Solution
Approximate Solution

(a) N=5.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Exact Solution
Approximate Solution

(b) N=10.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Exact Solution
Approximate Solution

(c) N=20.
Figure 6.3: Exact solution and approximate solution plots for the finite difference
method using different values of the number of mesh points N .

with u∆x solving the matrix equation (6.14) and the norm ‖ · ‖∞ is defined
as

‖u∆x‖∞ = max
1≤j≤N

|uj|,

‖f∆x‖∞ = max
1≤j≤N

|fj|.

It is also possible to prove the following error estimate: Let

Ej = u(xj)− u∆x
j , ∀ j = 1, . . . , N

where u∆x
j is the approximate solution produced by the finite difference

scheme for a given value of ∆x.

77

6.5. Finite Difference Schemes for the 2-D Poisson Equation

N Error in Max-norm EOC
5 5.890× 10−3 1.969
10 1.178× 10−3 1.996
20 4.911× 10−4 2.000
40 1.288× 10−4 2.000
80 3.302× 10−5

Table 6.1: Error Table of the finite difference method for the BVP (6.15).

Next, let
E∆x = [E1, . . . , EN].

Then it holds that

‖E∆x‖∞ ≤
∆x2

96
max
0≤x≤1

|f ′′(x)|. (6.16)

The error estimate (6.16) therefore justifies the second order convergence
observed in the numerical examples (see Table 6.1).

6.5 Finite Difference Schemes for the 2-D Poisson Equation

In this section, we consider the two-dimensional version of the Poisson equa-
tion on the unit square domain, i.e., with the domain Ω = (0, 1)2:

−
(
uxx(x) + uyy(x)

)
= f(x), for x ∈ Ω = (0, 1)2,

u(x) ≡ 0, for x ∈ ∂Ω.
(6.17)

We can now formulate a finite difference scheme for the Equation (6.17).
Indeed, let ∆x,∆y > 0 and and let N = 1

∆x
− 1,M = 1

∆y
− 1. We can then

discretise the domain Ω into a set of (N + 2)× (M + 2) points by setting

xi = i∆x, ∀ 1 ≤ i ≤ N

x0 = 0, xN+1 = 1,

yj = j∆y, ∀ 1 ≤ j ≤M

y0 = 0, yM+1 = 1.

Figure 6.4 displays an example of the discretised two-dimensional domain.

The aim of a finite difference scheme is then to approximate

uij ≈ u(xi, yj).

78

6.5. Finite Difference Schemes for the 2-D Poisson Equation

0 0.25 0.50 0.75 1
0

0.25

0.50

0.75

1

∆x

∆y

(xj, yj)

Figure 6.4: An example of a two-dimensional mesh for the domain Ω = (0, 1)2

using ∆x = 1
8 ,∆y = 1

4 .

We similarly define

fij = f(xi, yj).

Once again, we discretise the Laplacian operator with a central difference
approximation, i.e., we set

uxx(xi, yj) ≈
u(xi + ∆x, yj)− 2u(xi, yj) + u(xi −∆x, yj)

∆x2

≈ ui+1,j − 2ui,j + ui−1,j

∆x2
,

and similarly

uyy(xi, yj) ≈
u(xi, yj + ∆y)− 2u(xi, yj) + u(xi, yj −∆y)

∆y2

≈ ui,j+1 − 2ui,j + ui,j−1

∆y2
.

Hence, a finite difference scheme for approximating (6.17) is given by

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2

)
= fij (6.18)

for all i = 1, . . . , N , j = 1, . . . ,M . In addition, the boundary conditions
are imposed by specifying

u0,j = uN+1,j = 0, ∀ j = 0, 1, . . . ,M + 1,

ui,0 = ui,M+1 = 0, ∀ i = 0, 1, . . . , N + 1.

79

6.5. Finite Difference Schemes for the 2-D Poisson Equation

For simplicity, we may set ∆x = ∆y and therefore N = M . Then, intro-
ducing the vectors

U =
[
u1,1, u2,1, . . . , uN,1, u1,2, u2,2, . . . , uN,2, . . . , u1,N , u2,N , . . . , uN,N

]ᵀ
,

F = ∆x2
[
f1,1, f2,1, . . . , fN,1, f1,2, f2,2, . . . , fN,2, . . . , f1,N , f2,N , . . . , fN,N

]ᵀ
,

we observe that the finite difference scheme (6.18) can be recast as the
following matrix equation:

AU = F, (6.19)

where A is the N2 ×N2 block matrix given by

A =


B −I 0 . . . 0

−I B −I . . .
...

0
. 0

...
. . . −I B −I

0 . . . 0 −I B

 .

Here, I is the N ×N identity matrix and B is the N ×N matrix given by

B =


4 −1 0 . . . 0

−1 4 −1
. . .

...

0
. 0

...
. . . −1 4 −1

0 . . . 0 −1 4

 .

Finite difference schemes can also be defined for other simple two-dimensional
domains such as rectangles. Unfortunately, it is significantly more compli-
cated to define finite difference schemes for even slightly more complex
geometries such as circles. We must therefore find an alternative strategy.
One possibility is provided by the so-called finite element methods, which
are considered in the next chapter.

6.5.1 Numerical Results in 2-D

We conclude this chapter by considering the following boundary value prob-
lem involving the two-dimensional Poisson equation:

−
(
uxx + uyy

)
= 5π2 sin(πx) sin(2πy),

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0, ∀ x, y ∈ [0, 1].
(6.20)

80

6.5. Finite Difference Schemes for the 2-D Poisson Equation

(a) N=M=5. (b) N=M=10.

(c) N=M=20. (d) Exact Solution.
Figure 6.5: Exact solution and approximate solution plots for the two-
dimensional finite difference method using different values of the number of in-
terior mesh points in one direction N = M .

It can be show that the exact solution to the BVP (6.20) is given by
u(x, y) = sin(πx) sin(2πy). We use the two-dimensional finite difference
method to approximate solutions to this problem for different values of the
number of interior mesh points in each one direction N = M .

Figure 6.5 displays our results and indicates that the two-dimensional finite
difference method can approximate solutions to the BVP (6.20) very well.
Indeed, the associated errors given in Table 6.2 indicate that the approx-
imate solutions seem to converge to the exact solution as the number of
mesh points in each direction is increased. This conclusion is supported
by Figure 6.6, which displays a logarithmic plot of the errors as a function
of N . Furthermore, we observe once again that the experimental order of
convergence EOC ≈ 2.

81

6.5. Finite Difference Schemes for the 2-D Poisson Equation

Figure 6.6: Logarithmic plot of the max-error norm for the approximate solutions
vs. the number of interior mesh points in one direction N = M .

N=M Error in Max-norm EOC
5 7.023× 10−2 1.847
10 2.293× 10−2 1.991
20 6.328× 10−3 1.998
40 1.663× 10−3 1.999
80 4.262× 10−4 2.000
160 1.079× 10−4

Table 6.2: Error Table of the two-dimensional finite difference method for the
BVP (6.20).

Remark 6.2 It is important to note that in the two-dimensional case, there
is no longer a linear relationship between the number of interior mesh points
in each direction, N = M , and the amount of computational work that needs
to be done in order to obtain the finite difference approximation of the so-
lution. Indeed, suppose our computational domain consists of N interior
mesh points in each direction. Hence, our mesh consists of a total of N2

interior mesh points. Thus, due to the two-dimensional nature of the prob-
lem, the amount of computational work required will be at least of the order
O(N2).

Let us now assume that we double the number of interior mesh points in each
direction. This results in a total of 2N × 2N = 4N2 interior mesh points
and hence, we must now perform 4 times as much computational work in
order to approximate the solution (if we assume that the linear system is
solved in an optimal way). This is in contrast to the one-dimensional case
where the computational work is of the order O(N) and therefore doubling

82

6.5. Finite Difference Schemes for the 2-D Poisson Equation

the number of mesh points results in only twice the computational work.
Therefore, in order to decrease the error by a factor of 4, we must perform
2 times the computational work in a one-dimensional problem but 4 times
the computational work in a two-dimensional problem.

83

7 Finite Element Methods for the 1-D
Poisson Equation

Finite element methods (FEM) are a powerful and heavily used alternative
to the finite difference methods introduced in Chapter 6. We begin with a
description of FEM in one space dimension.

Consider the one-dimensional Poisson equation given by

−u′′(x) = f(x), ∀x ∈ (0, 1),

u(0) = u(1) = 0.
(7.1)

In Chapter 6, we derived the Poisson equation as the Euler-Lagrange equa-
tions corresponding to the solutions of the following variational problem:

min
u
J(u), (7.2)

where

J(u) =
1

2

∫ 1

0

|u′(x)|2dx−
∫ 1

0

u(x)f(x)dx,

and we have assumed that u(0) = u(1) = 0.

We first study the variational problem (7.2) in more detail.

7.1 Variational Principles

The first question we must ask concerning the variational problem (7.2)
is: in what set (class) of functions do we seek a minimiser of the Dirichlet
energy J?

Clearly, the boundary conditions impose a restriction on the set of admissi-
ble functions in which a minimiser is sought. It is therefore natural to ask
if there are other constraints as well.

84

7.1. Variational Principles

Indeed, a natural constraint should be to restrict u to the class of functions
for which the Dirichlet energy J(u) is well-defined. This can be ensured if
it holds that ∫ 1

0

|u′(x)|2dx <∞, (7.3)

and ∣∣∣∣∫ 1

0

u(x)f(x)dx

∣∣∣∣ <∞. (7.4)

In particular, the conditions (7.3) and (7.4) ensure that the Dirichlet energy
J(u) is mathematically well-defined. We can therefore narrow down the set
of admissible functions by imposing (7.3) and (7.4).
We define the set

H1
0

(
[0, 1]

)
:=
{
u : [0, 1]→ R : u(0) = u(1) = 0 and

∫ 1

0

|u′(x)|2dx <∞
}
.

Thus, H1
0

(
[0, 1]

)
is the set of all functions that vanish at the boundary

and have the property that the integral of the square of their derivative is
bounded.

We can also define a norm on H1
0

(
[0, 1]

)
by setting

‖u‖H1
0 ([0,1]) :=

(∫ 1

0

|u′(x)|2dx
)1/2

.

Note that this norm is well defined for all u ∈ H1
0

(
[0, 1]

)
since condition

(7.3) is automatically satisfied for all u ∈ H1
0

(
[0, 1]

)
.

H1
0

(
[0, 1]

)
is a prototypical example of a Sobolev space. We now give some

examples of functions that belong to the set H1
0

(
[0, 1]

)
.

Example 7.1 Let u : [0, 1]→ R be the function given by

u(x) = x(1− x).

Then, clearly u(0) = u(1) = 0. Furthermore, it holds that∫ 1

0

|u′(x)|2dx =

∫ 1

0

|1− 2x|2dx ≤ 2.

Hence, u ∈ H1
0

(
[0, 1]

)
.

85

7.1. Variational Principles

Example 7.2 Let u : [0, 1]→ R be the function given by

u(x) =

{
x if x ∈ [0, 1

2
],

1− x if x ∈ (1
2
, 1].

Check that u ∈ H1
0

(
[0, 1]

)
.

Clearly, condition (7.3) is automatically satisfied for all u ∈ H1
0

(
[0, 1]

)
. A

natural question to ask is if the condition (7.4) is also satisfied by such
functions. Let us therefore consider the following calculation: Let u ∈
H1

0

(
[0, 1]

)
. Then, the Cauchy-Schwarz inequality implies that∣∣∣∣∫ 1

0

u(x)f(x)dx

∣∣∣∣ ≤ ∫ 1

0

|u(x)||f(x)|dx

≤
(∫ 1

0

|u(x)|2dx
)1/2

·
(∫ 1

0

|f(x)|2dx
)1/2

.

(7.5)

To bound the above integrals, we continue by defining the set

L2
(
[0, 1]

)
:=
{
g : [0, 1]→ R :

∫ 1

0

|g(x)|2dx <∞
}
.

and we define a norm on the set L2
(
[0, 1]

)
by setting

‖g‖L2([0,1]) =
(∫ 1

0

|g(x)|2dx
)1/2

.

Hence, under the assumption that both functions u, f ∈ L2
(
[0, 1]

)
, Inequal-

ity (7.5) implies that∣∣∣∣∫ 1

0

u(x)f(x)dx

∣∣∣∣ ≤ ‖u‖L2([0,1]) · ‖f‖L2([0,1]) <∞.

Therefore, the Dirichlet energy J given by (7.2) is well-defined if the fol-
lowing constraints on the functions u and f hold:

u ∈ H1
0

(
[0, 1]

)
, u ∈ L2

(
[0, 1]

)
,

f ∈ L2
(
[0, 1]

)
.

As a matter of fact, we require even less restrictive constraints on u and f
to guarantee that the Dirichlet energy J(u) is well defined. Indeed, consider
the following simple calculation:

86

7.1. Variational Principles

Let u ∈ H1
0

(
[0, 1]

)
. Hence u(0) = 0 and by the fundamental theorem of

calculus it holds that

u(x) =

∫ x

0

u′(s)ds, ∀ x ∈ [0, 1],

=⇒ |u(x)| ≤
∫ x

0

|u′(s)|ds

≤
∫ 1

0

|u′(s)|ds, ∀ x ∈ [0, 1],

=⇒ |u(x)| ≤
∫ 1

0

1 · |u′(s)|ds

≤
(∫ 1

0

|1|2ds
)1/2

·
(∫ 1

0

|u′(s)|2ds
)1/2

,

where the last inequality follows from the Cauchy-Schwarz inequality.

Therefore, for all x ∈ [0, 1], it holds that

|u(x)|2 ≤
∫ 1

0

|u′(s)|2ds.

Integrating both sides of this inequality over the interval [0, 1], we obtain∫ 1

0

|u(x)|2dx ≤
∫ 1

0

|u′(x)|2dx, (7.6)

and therefore it holds that

‖u‖L2([0,1]) ≤ ‖u‖H1
0 ([0,1]). (7.7)

Inequality (7.7) is an example of a Poincaré inequality. In particular, In-
equality (7.7) implies that it is sufficient to impose the constraints u ∈
H1

0

(
[0, 1]

)
and f ∈ L2

(
[0, 1]

)
in order to ensure that the energy functional

(7.2) is well-defined.

The precise statement of the variational principle is therefore:

Given f ∈ L2
(
[0, 1]

)
, find u ∈ H1

0

(
[0, 1]

)
, such that u minimises the energy

functional J(v) given by (7.2) for all v ∈ H1
0

(
[0, 1]

)
, i.e.,

find u ∈ H1
0

(
[0, 1]

)
such that

J(u) = min
v∈H1

0 ([0,1])
J(v). (7.8)

87

7.2. A Variational Formulation

7.2 A Variational Formulation

As is standard in the Calculus of Variations, we will compute the minimiser
u of (7.8) using the Euler-Lagrange equations, i.e.,

Find u ∈ H1
0

(
[0, 1]

)
such that for all v ∈ H1

0

(
[0, 1]

)
it holds that

J ′(u, v) = 0,

where

J ′(u, v) = lim
τ→0

J(u+ τv)− J(u)

τ
.

We recall that the formal calculations in Section 6.1.1 imply that for all
v ∈ H1

0

(
[0, 1]

)
the minimiser u must satisfy the equation∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

v(x)f(x)dx. (7.9)

Several remarks are in order here.

Remark 7.3 Equation (7.9) is termed the variational formulation of the
one-dimensional Poisson equation. It is also known as the principle of
virtual work in structural mechanics.

Remark 7.4 We observe that (7.9) is well-defined. Indeed, let u, v ∈
H1

0

(
[0, 1]

)
. Then, the Cauchy-Schwarz inequality implies that∣∣∣∣∫ 1

0

u′(x)v′(x)dx

∣∣∣∣ ≤ ‖u‖H1
0 ([0,1]) · ‖v‖H1

0 ([0,1]) <∞.

and similarly, f ∈ L2
(
[0, 1]

)
implies that∣∣∣∣∫ 1

0

v(x)f(x)dx

∣∣∣∣ ≤ ‖v‖L2([0,1]) · ‖f‖L2([0,1]) (Cauchy-Schwarz)

≤ ‖v‖H1
0 ([0,1]) · ‖f‖L2([0,1]) (Poincaré Inequality)

<∞.

Remark 7.5 Since u ∈ H1
0

(
[0, 1]

)
, we can set v = u in Equation (7.9).

Then it holds that

‖u‖2
H1

0 ([0,1]) =

∫ 1

0

|u′(x)|2dx =

∫ 1

0

u(x)f(x)dx

≤ ‖u‖L2([0,1]) · ‖f‖L2([0,1]) (Cauchy-Schwarz)

≤ ‖u‖H1
0 ([0,1]) · ‖f‖L2([0,1]) (Poincaré Inequality),

88

7.3. The Finite Element Formulation

and therefore, it holds that

‖u‖H1
0 ([0,1]) ≤ ‖f‖L2([0,1]) (7.10)

Thus, (7.10) provides a stability estimate on the solution of the variational
formulation of the one-dimensional Poisson equation in terms of the given
data function f .

Remark 7.6 Let u be the solution to Equation (7.9) and furthermore sup-
pose that u′′ exists and is bounded. Applying integration by parts in Equation
(7.9) implies that for all v ∈ H1

0

(
[0, 1]

)
it holds that

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

v(x)f(x)dx,

=⇒
∫ 1

0

(
− u′′(x)− f(x)

)
v(x)dx = 0,

=⇒ − u′′(x) = f(x).

We have therefore recovered the pointwise form of the one-dimensional Pois-
son equation (7.1). We remark that Equation (7.1) is also termed the
strong form of the one-dimensional Poisson equation. However, the varia-
tional form (7.9) is more fundamental since it is derived directly from the
variational principle (7.2). The Finite Element method (FEM) essentially
amounts to a discretisation of this variational formulation.

7.3 The Finite Element Formulation

Let V = H1
0

(
[0, 1]

)
. Then the variational formulation of the one-dimensional

Poisson equation is:

Find u ∈ V such that for all v ∈ V it holds that∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

v(x)f(x)dx. (7.11)

Using the notation (
g, h
)

=

∫ 1

0

g(x)h(x)dx,

we may write Equation (7.11) concisely as(
u′, v′

)
=
(
f, v
)
, ∀ v ∈ V. (7.12)

89

7.3. The Finite Element Formulation

Observe that the function space V is infinite-dimensional. The Finite
Element method replaces this infinite-dimensional space V with a suit-
able finite-dimensional subspace V h ⊆ V and attempts to find a function
uh ∈ V h such that (7.12) holds for all v ∈ V h ⊆ V .

To be more concrete, we consider a discretisation of the domain Ω = [0, 1].
Let h > 0 and let N = 1

h
− 1. Then we discretise the domain [0, 1] into

N + 2 points by setting

x0 = 0, xN+1 = 1, xj = jh, j = 1, . . . , N.

Figure 7.1 displays an example of the discretised domain. We remark that
this discretisation is exactly the same as the discretisation considered in the
case of the finite difference method.

Figure 7.1: An example of a one-dimensional mesh for the domain Ω = (0, 1).

In addition, let

V h =
{
w : [0, 1]→ R : w is continuous, w(0) = w(1) = 0,

and w|[(j−1)h,jh] is linear ∀ j ∈ {1, . . . , N + 1}
}
.

In other words, V h is the set of all continuous, piecewise linear functions
on [0, 1] with respect to the partition

[0, 1] =
N+1⋃
j=1

[(j − 1)h, jh].

A typical example of a function w ∈ V h is shown in Figure 7.2.

Exercise 7.7 Check that for all h > 0, it holds that V h ⊆ V = H1
0

(
[0, 1]

)
.

Remark 7.8 Consider, for j ∈ {1, . . . , N}, the continuous and piecewise
linear function φj(x) given by

φj(xi) =

{
1 if i = j,

0 otherwise.

90

7.3. The Finite Element Formulation

0 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1
0

0.2

0.4

0.6

0.8

Figure 7.2: An example of a continuous, piecewise linear function in the space
V h for the mesh-width h = 1

8 .

More explicitly, we can calculate the functions to be

φj(x) =


x−xj−1

h
x ∈ [xj−1, xj),

xj+1−x
h

x ∈ [xj, xj+1),

0 otherwise.

Figure 7.3 displays an example of such a function. The functions φj, j =
1, . . . , N are termed hat or tent functions.

0=x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

1=x
8

0

0.2

0.4

0.6

0.8

1

Figure 7.3: An example of a hat function for a mesh with h = 1
8 .

It can easily be checked that the set {φj}Nj=1 forms a basis of the space V h.
Indeed, given a function w ∈ V h, it clearly holds that

w(x) =
N∑
j=1

wjφj(x), (7.13)

where wj = w(xj).

91

7.3. The Finite Element Formulation

It therefore follows that the space V h is finite-dimensional and in fact has
dimension N . The FEM for the one-dimensional Poisson equation thus
consists of the following variational formulation:

Find uh ∈ V h such that for all v ∈ V h it holds that(
u′h, v

′) =
(
f, v
)
. (7.14)

Thus the finite element approximation uh is a continuous, piecewise lin-
ear function that approximates the solution of the Poisson equation. This
should be contrasted to the finite difference method where point values of
u are approximated.

7.3.1 Concrete Realisation of FEM

Given v ∈ V h, it follows from (7.13) that v can be written as

v =
N∑
j=1

vjφj(x).

Therefore, (7.14) implies that (
u′h, v

′) =
(
f, v
)
,

⇐⇒

(
u′h,
(N∑
j=1

vjφj(x)
)′)

=

(
f,

N∑
j=1

vjφj(x)

)
.

Next, using the linearity of the inner product
(
·, ·
)
, it holds that

N∑
j=1

vj
(
u′h, φ

′
j

)
=

N∑
j=1

vj
(
f, φj

)
for all vj ∈ R.

This final equation is satisfied if and only if for all j = 1, . . . , N , it holds
that (

u′h, φ
′
j

)
=
(
f, φj

)
. (7.15)

Furthermore, since uh ∈ V h, it holds that

uh =
N∑
i=1

uiφi(x).

92

7.3. The Finite Element Formulation

Thus, (7.15) reduces to

N∑
i=1

ui
(
φ′i, φ

′
j

)
=
(
f, φj

)
.

Next, we define the N ×N matrix A as

A = {Aij}i,j=1,...,N ,

where
Aij =

(
φ′i, φ

′
j

)
,

and the vectors U = {uj}Nj=1 and F = {Fj}Nj=1, where

Fj =
(
f, φj

)
.

Hence, Equation (7.15) reduces to the matrix equation

AU = F. (7.16)

The matrix A is termed the stiffness matrix, the Vector F is termed the
load vector and the vector U is termed the solution vector. Thus, the Finite
Element method also reduces to a matrix equation.

Of course, it remains to establish that the matrix equation (7.16) has a
unique solution. To this end, observe that the matrix A is symmetric since

Aij =
(
φ′i, φ

′
j

)
=

∫ 1

0

φ′i(x)φ′j(x)dx

=

∫ 1

0

φ′j(x)φ′i(x)dx =
(
φ′j, φ

′
i

)
= Aji.

Furthermore, denoting by 〈·, ·〉 the usual inner product on RN , it holds for
any w ∈ RN that

〈Aw,w〉 =
N∑

i,j=1

wiAijwj =
N∑

i,j=1

wi
(
φ′i, φ

′
j

)
wj

=

(
N∑
i=1

wiφ
′
i,

N∑
j=1

wjφ
′
j

)
=
(
w̄′, w̄′

)
> 0, if w̄ 6= 0,

where w̄ =
∑N

i=1wiφi. Thus, the matrix A is positive-definite.

Given that the matrix A is symmetric and positive definite, it follows that
A is invertible, i.e. the linear system (7.16) is solvable and has a unique
solution. Thus, the Finite Element method (7.14) is well-defined.

93

7.3. The Finite Element Formulation

7.3.2 Computing the Stiffness Matrix and the Load Vector

We can compute the stiffness matrix explicitly in the following manner:

φj(x)′ =


1
h
, if x ∈ [(j − 1)h, jh],

− 1
h
, if x ∈ [jh, (j + 1)h],

0, otherwise.

Hence, for all i, j = 1, . . . , N it holds that

Aij = 0, if |i− j| > 1,

Aj−1,j = Aj,j−1 = −1

h
,

Aj,j =
1

h2

∫ xj+1

xj−1

dx =
2

h
.

Therefore, the matrix A is given by

A =
1

h


2 −1 0 . . . 0

−1 2 −1
...

0
. 0

... −1 2 −1
0 . . . 0 −1 2

 .

Thus, up to a scaling factor, the stiffness matrix A in FEM is identical to
the matrix A that arises in a finite difference method.

Next, in order to evaluate the load vector F , observe that

Fj =

∫ 1

0

f(x)φj(x)dx,

and this integral can be computed using a numerical quadrature rule. In
particular, using the trapezoidal method on each element, we obtain

Fj =

∫ 1

0

f(x)φj(x)dx =

∫ xj

xj−1

f(x)φj(x)dx+

∫ xj+1

xj

f(x)φj(x)dx

≈ h

2

(
φj(xj−1)︸ ︷︷ ︸

=0

fj−1 + 2φj(xj)︸ ︷︷ ︸
=1

fj + φj(xj+1)︸ ︷︷ ︸
=0

fj+1

)
= hfj.

94

7.4. Convergence Analysis

7.4 Convergence Analysis

Let uh be the FEM solution of Equation (7.14) and define

eh = u− uh.

Thus, eh ∈ V is the error function. Note that (7.12) implies that for all
v ∈ V h ⊆ V , it holds that (

u′, v′
)

=
(
f, v
)
,

and similarly (7.14) implies that for all v ∈ V h, it holds that(
u′h, v

′) =
(
f, v
)
.

Therefore, the linearity of the inner product
(
·, ·
)

implies that for all v ∈ V h

it holds that (
(u− uh)′, v′

)
≡ 0,

i.e.,

(e′h, v
′) ≡ 0. (7.17)

Identity (7.17) is termed Galerkin orthogonality and it implies that the error
eh is orthogonal to the subspace V h with respect to the

(
·, ·
)

inner product.

Next, given any v ∈ V h, we define w = uh − v ∈ V h. Then it holds that

‖eh‖2
H1

0 ([0,1]) =

∫ 1

0

|e′h(x)|2dx

=
(
e′h, e

′
h

)
=
(
e′h, e

′
h

)
+ (e′h, w

′) (Galerkin Orthogonality (7.17))

=
(
e′h, (eh + w)′

)
(Linearity of

(
·, ·
)
)

=
(
e′h, (u− v)′

)
(Definition of eh)

=

∫ 1

0

e′h(x)
(
u′(x)− v′(x)

)
dx

≤

(∫ 1

0

|e′h(x)|2dx

)1/2

·

(∫ 1

0

|u′(x)− v′(x)|2dx

)1/2

= ‖eh‖H1
0 ([0,1]) · ‖u− v‖H1

0 ([0,1]),

95

7.4. Convergence Analysis

where the last inequality follows from the Cauchy-Schwarz inequality.

Hence, for all v ∈ V h it holds that

‖eh‖H1
0 ([0,1]) ≤ ‖u− v‖H1

0 ([0,1]).

In other words, for all v ∈ V h it holds that

‖u− uh‖H1
0 ([0,1]) ≤ ‖u− v‖H1

0 ([0,1]). (7.18)

The inequality (7.18) is known as Céa’s Lemma. It is essentially an opti-
mality result which states that uh is the best approximation of the exact
solution u in the space V h with respect to the ‖ · ‖H1

0 ([0,1]) norm. Inequality
(7.18) is therefore an extremely powerful tool for proving error estimates.
Indeed, we can choose v ∈ V h to be the piecewise linear interpolant of u,
i.e., given a grid, v is a continuous, piecewise linear function such that for
all j = 1, . . . , N it holds that

v(xj) = u(xj),

v(0) = v(1) = 0.

We denote such a function v by Ihu. Figure 7.4 displays an example of Ihu
for the function u(x) = sin(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1
exact function u
Interpolant I

h
u

Figure 7.4: Plot of the function u = sin(x) and the interpolant Ihu for a mesh
with h = 1

8 .

This interpolation allows us to calculate that for all x ∈ [0, 1] it holds that

|u(x)− Ihu(x)| ≤ h2

8
max
0≤y≤1

|u′′(y)|,

and

|u′(x)− Ihu′(x)| ≤ C̃h max
0≤y≤1

|u′′(y)|,

96

7.5. Numerical Experiments

where C̃ ∈ R is some constant.

Next, squaring and integrating the above inequalities results in

‖u− Ihu‖H1
0 ([0,1]) ≤ Ch. (7.19)

where C is a constant that depends on max0≤y≤1 |u′′(y)|.
Therefore, (7.18) and (7.19) together imply that

‖u− uh‖H1
0 ([0,1]) ≤ Ch. (7.20)

Thus, the FEM converges to the exact solution as h → 0 and the rate of
convergence in the H1

0

(
[0, 1]

)
norm is at least 1. In order to obtain a cor-

responding error estimate for the L2
(
[0, 1]

)
norm, we can use the Poincaré

inequality (7.7) to obtain

‖u− uh‖L2([0,1]) ≤ Ch.

Therefore, the rate of convergence in the L2
(
[0, 1]

)
norm is also at least

1. However, this last error estimate is extremely crude and in practice we
often observe an EOC ≈ 2 in the L2

(
[0, 1]

)
norm.

7.5 Numerical Experiments

As a practical example, let us consider the following two-point boundary
value problem:

−u′′(x) = sin(x), −π < x < π,

u(−π) = u(π) = 0.
(7.21)

It can be shown that exact solution of (7.21) is given by u(x) = sin(x). We
use the Finite Element method to approximate the solution to this problem
using N = 100 mesh points.

Figure 7.5 displays our results and indicates that the Finite Element method
can approximate solutions to the BVP (7.21) very well. Indeed the associ-
ated errors given in Table 7.1 indicate that the approximate solutions seem
to converge to the exact solution as the number of mesh points is increased.
Furthermore, our results agree with the error estimate (7.20) and we ob-
serve linear convergence in the H1

0 norm. On the other hand, we obtain
EOC ≈ 2 in the L2 norm.

97

7.5. Numerical Experiments

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5
Exact Solution
FEM Approximation

Figure 7.5: Exact solution and approximate solution plot for the Finite Element
method using N = 100 mesh points.

N Error in L2 norm EOC Error in H1
0 -norm EOC

25 8.610× 10−3 1.998 0.1235 0.999
50 2.241× 10−3 2.000 0.0630 1.000
100 5.716× 10−4 2.000 0.0318 1.000
200 1.443× 10−4 0.0160

Table 7.1: Error Table of the Finite Element method for the BVP (7.21).

As a second example, we consider the following two-point boundary value
problem:

−u′′(x) = cos(x), −π < x < π,

u(−π) = −1, u(π) =
1

2
.

(7.22)

Note that this requires changes in the FEM methodology we have intro-
duced since the boundary conditions are no longer zero.

It can be shown that the exact solution to the BVP (7.22) is given by
u(x) = cos(x) + 3x

4π
+ 3

4
. Once again, we use FEM to approximate the

solution to this problem using N = 100 mesh points.

Figure 7.6 displays our results and indicates that FEM can also approximate
solutions to the BVP (7.22) very well. Indeed the associated errors given
in Table 7.2 once again indicate that the approximate solutions seem to
converge to the exact solution as the number of mesh points is increased.
Once again, we observe EOC ≈ 1 in the H1

0 norm and EOC ≈ 2 in the L2

norm.

98

7.5. Numerical Experiments

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2
Exact Solution
FEM Approximation

Figure 7.6: Exact solution and approximate solution plot for the Finite Element
method using N = 100 mesh points.

N Error in L2 norm EOC Error in H1
0 -norm EOC

25 8.610× 10−3 1.998 0.1235 0.999
50 2.241× 10−3 2.000 0.0630 1.000
100 5.716× 10−4 2.000 0.0318 1.000
200 1.443× 10−4 0.0160

Table 7.2: Error Table of the Finite Element method for the BVP (7.22).

99

8 Finite Element Methods for the 2-D
Poisson Equation

In this Chapter, we extend the Finite Element method for solving the Pois-
son equation to two dimensions. The formulation of FEM in two dimensions
is analogous to the one-dimensional case. We therefore begin by stating
some definitions.

Let Ω ⊂ R2 (or Rn, for any n ∈ N) be a bounded set. Then we define the
function space

L2(Ω) =
{
v : Ω→ R :

∫
Ω

|v|2dx <∞
}
.

In addition, we define a norm on the space L2(Ω) by setting for all v ∈ L2(Ω)

‖v‖L2(Ω) =

(∫
Ω

|v|2dx
)1/2

,

and we define an inner product by setting for all u, v ∈ L2(Ω)(
u, v
)
L2(Ω)

=

∫
Ω

u(x)v(x)dx.

Similarly, we define the function space

H1
0 (Ω) =

{
v : Ω→ R :

∫
Ω

|∇v|2dx <∞ and v = 0 on ∂Ω
}
.

We again define a norm on this function space by setting for all v ∈ H1
0 (Ω)

‖v‖H1
0 (Ω) =

(∫
Ω

|∇v|2dx
)1/2

,

and we define an inner product by setting for all u, v ∈ H1
0 (Ω)(

u, v
)
H1

0 (Ω)
=

∫
Ω

〈∇u,∇v〉dx.

100

8.1. The two-dimensional Poisson Equation

Finally, we recall that the norms we have introduced are related through the
Poincaré inequality: for all v ∈ H1

0 (Ω), there exists some constant C ∈ R
such that ∫

Ω

|v|2dx ≤ C

∫
Ω

|∇v|2dx. (8.1)

8.1 The two-dimensional Poisson Equation

Let Ω ⊆ R2 be an open set and let f : Ω → R be some known function.
Then the strong form of the two-dimensional Poisson equation is given by

−∆u = f, on Ω,

u = 0, on ∂Ω.
(8.2)

Similar to the one-dimensional case however, the variational formulation of
the two-dimensional Poisson equation is more fundamental than the strong
form.

8.1.1 Variational Formulation

Let Ω ⊆ R2 be an open set, let f : Ω→ R be some known function and let
V = H1

0 (Ω). Then the weak form of the two-dimensional Poisson equation
(8.2) is as follows:

Find u ∈ V such that for all v ∈ V it holds that(
u, v
)
H1

0 (Ω)
=
(
f, v
)
L2(Ω)

, (8.3)

or equivalently ∫
Ω

〈∇u,∇v〉dx =

∫
Ω

f(x)v(x)dx.

A few remarks are now in order.

Remark 8.1 If the function u ∈ H1
0 (Ω) is sufficiently regular, then the

weak form (8.3) is equivalent to the strong form (8.2). This assertion can
be checked by repeating the calculations carried out in Remark 7.6 in two
dimensions, i.e. by applying integration by parts in two dimensions.

101

8.2. The Finite Element Formulation

Remark 8.2 Let the energy functional J be defined as

J(w) =
1

2

∫
Ω

|∇w|2dx−
∫

Ω

w(x)f(x)dx,

and let u ∈ H1
0 (Ω) be the function with the property that for all w ∈ H1

0 (Ω)
it holds that

J(u) ≤ J(w).

Then, it can be shown that u satisfies the variational formulation (8.3).

8.2 The Finite Element Formulation

Similar to the one-dimensional case, the Finite Element method in two
dimensions consists of solving the variational formulation on a finite-di-
mensional subspace V h ⊆ V = H1

0 (Ω).

8.2.1 Triangulations

In order to define the finite-dimensional subspace V h, we consider a poly-
gonal domain Ω. Thus, ∂Ω may consist of a large number of sides. An
example of such a domain is displayed in Figure 8.1.

Figure 8.1: Two-dimensional triangular mesh for a hexagonal domain Ω.

We consider a triangulation Th of the domain Ω of the form

Ω̄ =
⋃
K∈Th

K̄ = K̄1 ∪ K̄2 ∪ . . . ∪ K̄M ,

102

8.2. The Finite Element Formulation

where Ki, i = 1, . . . ,M are non-overlapping triangles such that no vertex
of a triangle lies on the interior of an edge of another triangle. An example
of such a triangulation is displayed in Figure 8.1.

Next, let h be the mesh width, i.e.

h = max
K∈Th

diam(K),

where diam(K) is the length of the longest edge of the triangle K.

Then, we define the finite-dimensional subspace V h as

V h =
{
v : Ω→ R : v continuous, v|K linear for each K ∈ Th, v = 0 on ∂Ω

}
.

In other words, V h is the space of continuous, piecewise linear functions
that vanish on the boundary ∂Ω. It is easy to check that V h ⊆ H1

0 (Ω).

The resulting Finite Element formulation is therefore:

Find uh ∈ V h such that for all v ∈ V h it holds that(
uh, v

)
H1

0 (Ω)
=
(
f, v
)
L2(Ω)

, (8.4)

or equivalently ∫
Ω

〈∇uh,∇v〉dx =

∫
Ω

f(x)v(x)dx.

8.2.2 Concrete Realisation of FEM

As in the one-dimensional case, we can define a basis for the finite-dimensional
subspace V h. Indeed, let {Ni}Ni=1 denote the set of interior nodes of the tri-
angles in Th. Then we define the so-called hat functions

φj(x) ∈ V h, j = 1, . . . , N,

where

φj(Ni) =

{
1 if j = i,

0 otherwise.

An example of such a hat function is displayed in Figure 8.2. Note that the
support of each hat function φj is restricted to triangles K ∈ Th that have
the node j as a vertex.

103

8.2. The Finite Element Formulation

Figure 8.2: An example of a two-dimensional hat function.

Next, using the fact that the hat functions {φj}Nj=1 define a basis for the
space V h, we may write each function v ∈ V h as

v(x) =
N∑
j=1

vjφj(x),

where vj = v(Nj) for all j = 1, . . . , N .

The two-dimensional Finite Element method can therefore be formulated
as (

uh, φj
)
H1

0 (Ω)
=
(
f, φj

)
L2(Ω)

, ∀ 1 ≤ j ≤ N,

or equivalently,∫
Ω

〈∇uh,∇φj〉dx =

∫
Ω

f(x)φj(x)dx, ∀ 1 ≤ j ≤ N. (8.5)

Since uh ∈ V h, it follows that there exist coefficients {ui}Ni=1 such that

uh =
N∑
i=1

uiφi.

Therefore, Equation (8.5) implies that for all j = 1, . . . , N it holds that

N∑
i=1

ui

∫
Ω

〈∇φi,∇φj〉dx =

∫
Ω

f(x)φj(x)dx. (8.6)

104

8.2. The Finite Element Formulation

Next, we define the vectors

U = {ui}Ni=1, F = {Fj}Nj=1,

and the N ×N matrix
A = {Aij}Ni,j=1,

where

Fj =

∫
Ω

f(x)φj(x)dx,

Aij =

∫
Ω

〈∇φi,∇φj〉dx.

Equation (8.6) can then be written as the matrix equation

AU = F. (8.7)

Thus, the two-dimensional Finite Element method also reduces to a matrix
equation for the vector of unknowns U . This vector U can now be obtained
by inverting the stiffness matrix A and multiplying it with the load vector
F . We remark that similar to the one-dimensional case, the stiffness matrix
A is symmetric and positive-definite and therefore invertible. Hence, the
FEM equation (8.7) has a unique solution. Furthermore, since each basis
function φj is supported on few triangles, the matrix A has a sparse struc-
ture.

We conclude this section by considering a concrete example. We consider
the simple case of a domain consisting of the unit square in 2-D. Therefore,
let Ω = (0, 1)2 and consider the uniform triangulation of this domain as
displayed in Figure 8.3.

It can then be shown that the stiffness matrix A is the n2×n2 block matrix
given by

A =


B −I 0 . . . 0

−I B −I . . .
...

0
. 0

...
. . . −I B −I

0 . . . 0 −I B

 .

Here, I is the n× n identity matrix and B is the n× n matrix given by

105

8.2. The Finite Element Formulation

0 0.5 1
0

0.5

1

1 2

n+1

n

n+2 2n

n
2

Figure 8.3: Uniform triangular mesh on the domain Ω = (0, 1)2 consisting of
N = n2 interior nodes.

B =


4 −1 0 . . . 0

−1 4 −1
. . .

...

0
. 0

...
. . . −1 4 −1

0 . . . 0 −1 4

 .

Therefore, the stiffness matrix A is identical to the matrix obtained in the
two-dimensional finite difference method.

In general, the stiffness matrix A can be computed in a straightforward
manner. We first observe that

Aij =

∫
Ω

〈∇φi,∇φj〉dx =
∑
K∈Th

∫
K

〈∇φi,∇φj〉dx.

The above equation suggests that we can compute a local integral for each
triangle K ∈ Th and then sum over all triangles to obtain each entry of the
stiffness matrix A.

Therefore, let Na,Nb,Nc be the three nodes of some triangle K ∈ Th. It
then follows from the definition of the basis functions that∫

K

〈∇φi,∇φj〉dx = 0.

unless both i and j are a vertex of K, i.e. one gets non-zero contributions
only if both i and j are in {a, b, c}.

106

8.2. The Finite Element Formulation

Thus, it is sufficient to consider for each triangle K ∈ Th, the symmetric,
3× 3 element stiffness matrix AK given by

AK =


∫
K
〈∇φa,∇φa〉dx

∫
K
〈∇φa,∇φb〉dx

∫
K
〈∇φa,∇φc〉dx∫

K
〈∇φb,∇φa〉dx

∫
K
〈∇φb,∇φb〉dx

∫
K
〈∇φb,∇φc〉dx∫

K
〈∇φc,∇φa〉dx

∫
K
〈∇φc,∇φb〉dx

∫
K
〈∇φc,∇φc〉dx

 .
The global stiffness matrix A can then be computed by combining all the
element stiffness matrices in the correct manner. This process is termed
assembly. A detailed explanation of the assembly process can be found in
Chapter 9. The load vector F can also be computed in a similar manner.

Remark 8.3 Similar to the one-dimensional case, it can be shown that the
two-dimensional Finite Element method satisfies the error estimate

‖u− uh‖H1
0 (Ω) ≤ Ch‖D2u‖L2(Ω).

8.2.3 Numerical Experiments in 2-D

Example 1

As a first numerical example, we consider the following boundary value
problem involving the two-dimensional Poisson equation:

−
(
uxx + uyy

)
= 8π2 cos(2πx) cos(2πy), ∀ x, y ∈ (0, 1),

u(0, y) = u(1, y) = cos(2πy), ∀ y ∈ [0, 1],

u(x, 0) = u(x, 1) = cos(2πx), ∀ x ∈ [0, 1].

(8.8)

It can be shown that the exact solution to the BVP (8.8) is given by
u(x, y) = cos(2πx) cos(2πy). We use the two-dimensional Finite Element
method to approximate solutions to this problem for different values of the
number of interior nodes N . Note that the boundary conditions are no
longer zero so we require some changes in the FEM methodology in order
to account for these inhomogeneous boundary conditions. A comprehensive
discussion on the treatment of inhomogeneous boundary conditions can be
found in Section 9.1.

Figure 8.4 displays our results and indicates that the two-dimensional Finite
Element method can approximate solutions to the BVP (8.8) very well. In-
deed, the associated errors given in Table 8.1 indicate that the approximate
solutions seem to converge to the exact solution as the number of interior

107

8.2. The Finite Element Formulation

(a) N=9. (b) N=49.

(c) N=225. (d) Exact Solution.
Figure 8.4: Exact solution and approximate solution plots for the two-
dimensional Finite Element method using different values of the number of inte-
rior nodes N .

nodes is increased. This conclusion is supported by Figure 8.5 and Figure
8.6, which display a logarithmic plot of the errors as a function of the num-
ber of interior nodes N and the mesh width h respectively. Furthermore,
we observe once again that the experimental order of convergence (EOC)
in the H1

0

(
[0, 1]2

)
norm approaches 1 as the number of interior nodes is

increased. On the other hand, the EOC in the L2
(
[0, 1]2

)
norm approaches

2 as the number of interior nodes is increased.

Remark 8.4 The EOCs depicted in Table 8.1 are with respect to the mesh
width h. One could also compute the EOCs with respect to the number of
degrees of freedom N , and these approach 1

2
in the H1

0

(
[0, 1]2

)
norm and

108

8.2. The Finite Element Formulation

Interior Nodes

10
0

10
5

E
rr

o
r

10
-4

10
-2

10
0

H
0

1
 Norm

L
2
 Norm

Figure 8.5: Logarithmic plot of the error in the H1
0 norm and L2 norm for the

approximate solutions vs. the number of interior nodes N .

(Grid Spacing)
-1

10
0

10
1

10
2

10
3

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

10
1

H
0

1
 Norm

L
2
 Norm

Figure 8.6: Logarithmic plot of the error in the H1
0 norm and L2 norm for the

approximate solutions vs. the mesh-width h.

1 in the L2
(
[0, 1]2

)
norm. The reason is the following: in meshes without

triangles with very acute angles and where all the triangles in the mesh have
roughly the same size, it holds that

h = O
(
N
−1/2
)
. (8.9)

You can check that this holds for the uniform mesh depicted in Figure 8.3.

This implies that the order of convergence with respect to N is only half
as big as the convergence with respect to h. Indeed, this relationship can
be observed by examining Figure 8.5 and Figure 8.6. Moreover, this is

109

8.2. The Finite Element Formulation

one of the reasons why computations in two dimensions are much more
computationally intensive than in one dimension, where h = O (N−1).

N h Error in L2 norm EOC Error in H1
0 norm EOC

9 0.354 0.2435 1.61 2.971 0.83
49 0.177 0.0796 1.89 1.672 0.95
225 0.088 0.0215 1.97 0.8629 0.99
961 0.044 5.469× 10−3 1.99 0.4350 1.00
3969 0.022 1.374× 10−3 2.00 0.2719 1.00
16129 0.011 3.439× 10−4 0.1090

Table 8.1: Error Table of the two-dimensional Finite Element method for the
BVP (8.8).

Example 2

A significant advantage of the Finite Element method is its ability to ap-
proximate solutions to PDEs on complicated domains. In order to illustrate
this aspect of FEM, we next consider a boundary value problem involving
the two-dimensional Poisson equation on a non-square domain. Thus, let
the domain Ω = (−1, 1)2 \

(
[0, 1]× [−1, 0]

)
and consider the BVP given by

−
(
uxx + uyy

)
= 1, ∀ (x, y) ∈ Ω,

u(r, θ) = r
2
3 sin

(
2θ
3

)
, ∀ (r, θ) ∈ ∂Ω,

(8.10)

where we have used polar coordinates (r, θ) to specify the boundary condi-
tions.

N h Error in L2 norm EOC Error in H1
0 norm EOC

3 1.000 0.0473 1.22 0.3554 0.62
21 0.500 0.0203 1.20 0.2320 0.63
105 0.250 8.818× 10−3 1.22 0.1498 0.64
1953 0.125 3.774× 10−3 1.25 0.0611 0.65
8001 0.063 1.585× 10−3 1.27 0.0387 0.66
32385 0.031 6.556× 10−4 0.0245

Table 8.2: Error Table of the two-dimensional Finite Element method for the
BVP (8.10).

Note that the domain in this case is now L-shaped. The exact solution to
the BVP (8.10) is given in polar coordinates as u(r, θ) = r

2
3 sin(2θ

3
). We

110

8.2. The Finite Element Formulation

(a) N=3. (b) N=21.

(c) N=105. (d) Exact Solution.
Figure 8.7: Exact solution and approximate solution plots for the two-
dimensional Finite Element method using different values of the number of inte-
rior nodes N .

once again use the two-dimensional Finite Element method to approximate
solutions to this BVP for different values of the number of interior nodes N .
We remark that similar to the previous example, the boundary conditions
are not zero (except near the reentrant corner) so we must take into account
the inhomogeneous nature of the boundary conditions (see Section 9.1).

Figure 8.7 displays our results and indicates once again that the two-
dimensional Finite Element method can approximate solutions to the BVP
(8.10) very well. Indeed, the associated errors given in Table 8.2 indicate
that the approximate solutions seem to converge to the exact solution as
the number of interior nodes is increased. This conclusion is supported by

111

8.2. The Finite Element Formulation

Interior Nodes

10
0

10
5

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

H
0

1
 Norm

L
2
 Norm

Figure 8.8: Logarithmic plot of the error in the H1
0 norm and L2 norm for the

approximate solutions vs. the number of interior nodes N .

Figure 8.8, which displays a logarithmic plot of the errors as a function of
the number of interior nodes N .

Based on the previous numerical examples in both 1-D and 2-D, we would
expect to observe an experimental order of convergence (EOC) with respect
to the mesh width h in the H1

0 (Ω) norm and the L2(Ω) norm of approxi-
mately 1 and 2, respectively. However, in a significant departure from the
previous numerical examples, we observe (see Table 8.2) that the EOC in
both cases is much less. Further experiments reveal that the EOC in the
H1

0 (Ω) norm and the L2(Ω) norm approaches 2
3

and 4
3

respectively as the
number of interior nodes is increased.

This reduced rate of convergence is essentially due to a so-called corner
singularity that arises when considering a non-convex domain, and which
leads to a solution with reduced regularity. More information on corner
singularities can be found in any standard textbook on the Finite Element
Method.

112

9 Implementation of the Finite Element
Method

In this chapter, we describe a simple implementation of FEM for the two-
dimensional Poisson equation with Dirichlet boundary conditions on a polyg-
onal domain Ω with boundary Γ.

We recall that the variational formulation of the Finite Element method is
of the form:

Find uh ∈ V h such that for all v ∈ V h it holds that(
uh, v

)
H1

0 (Ω)
=
(
f, v
)
L2(Ω)

, (9.1)

where
(
·, ·
)
H1

0 (Ω)
is the H1

0 inner product and
(
·, ·
)
L2(Ω)

is the L2 inner prod-

uct.

Thus, choosing the function space V h to be the span of the hat functions,
it can be shown that the discrete formulation (9.1) reduces to the matrix
equation

AU = F, (9.2)

where U is the vector of unknowns:

U = {uj}Nj=1,

A = {Aij}Ni,j=1 is the global stiffness matrix given by

Aij =

∫
Ω

〈∇φi,∇φj〉dx,

and F = {Fj}Nj=1 is the global load vector given by

Fj =
(
f, φj

)
=

∫
Ω

f(x)φj(x)dx.

113

The Finite Element method can then be implemented using the following
steps:

Step 1 Triangulation (Mesh Generation)

Given a polygonal domain Ω, the first step is to divide this domain into a set
of non-overlapping triangles. In general, this is a non-trivial, sophisticated
process, but various efficient algorithms are available for this purpose.

A popular algorithm involves starting with a coarse triangulation and then
refining the triangles successively. An example of such a process is displayed
in Figure 9.1. This process results in a so-called quasi-uniform mesh, i.e.,
the resulting triangles are of approximately the same size.

Ω
Γ

(a) Coarse triangulation.

Γ
Ω

(b) Fine triangulation.

Figure 9.1: An example of a coarse and a fine quasi-uniform mesh.

Depending on the nature of our problem, it may be necessary to refine
the mesh in some regions of the domain and allow it to remain coarse in
other regions. Such meshes are typically referred to as adapted meshes. An
example of adaptive mesh refinement is displayed in Figure 9.2.

Ω
Γ

(a) Coarse triangulation.

Γ
Ω

(b) Adaptive triangulation.

Figure 9.2: An example of adaptive mesh refinment.

114

In either case, one relies on free or commercial mesh generators such as,
e.g., DistMesh (MATLAB), NETGEN, GID, DELAUNDO, etc.

Let us now assume that a triangulation Th of the domain Ω is available.
The mesh information is then stored in the following manner:

Let {Ni}Ni=1 denote the nodes of the triangulation Th and let {Kj}Mj=1 denote
the triangles in Th. Then the mesh generator provides a numbering of the
nodes and the triangles as shown in Figure 9.3.

0 0.5 1 1.5

0

0.5

1

2 3

4

5
6

7

8

9

10

1

1

2

3

4

5

6

7

8
10

9

Figure 9.3: Labelling of the nodes (red) and triangles (blue) in a triangulation
Th.

In particular, the following two arrays are stored by the mesh generator:

1. Z is the 2×N array of node values such that

• Z(·, j) refers to the node Nj,

• Z(1, j), Z(2, j) represent the x- and y- coordinates respectively
of the node Nj.

2. T is the 3×M array of triangles such that

• T(·, j) refers to the jth triangle Kj,

• T(i, j), (i = 1, 2, 3) represent the three node vertices correspond-
ing to the triangle Kj.

Note that we have so far not distinguished between interior and boundary
nodes, and indeed the array Z contains boundary nodes as well. Often, an

115

additional array containing flags that correspond to boundary nodes is also
generated. This is important because it allows us to implement boundary
conditions.

As a concrete example, the node array Z and the triangle array T corre-
sponding to the mesh displayed in Figure 9.3 are given by

Z =

[
0 1

2
1 3

2
0 1

2
5
4

0 1 3
2

0 0 0 0 1
2

1
2

1
2

1 1 1

]
,

T =

1 2 2 3 3 4 7 6 6 5
2 5 3 6 4 7 9 7 8 6
5 6 6 7 7 10 10 9 9 8

 .
Note that once the array value T(i, j) is obtained, the coordinates of the
vertex i of the triangle Kj can be obtained by calling the array values
Z
(
·,T(i, j)

)
.

Most mesh generators provide the arrays Z and T and some additional in-
formation about the mesh. Mesh generators also aim to number the nodes
and triangles as efficiently as possible in order to minimise the band width
of the resulting matrices.

Step 2 Building Element Stiffness Matrices and Element Load
Vectors

The structure of the global stiffness matrix A implies that each element of
the matrix is given by

Aij =

∫
Ω

〈∇φi,∇φj〉dx =
M∑
m=1

∫
Km

〈∇φi,∇φj〉dx.

where Km is the mth triangle in the triangulation Th.

Note that the definition of the basis functions {φi}Ni=1 then implies that∫
Km
〈∇φi,∇φj〉dx 6= 0 if and only if Ni and Nj are both node vertices of

the triangle Km.

Next, observe that since Km is the mth triangle in the triangulation Th, it
follows that T(α,m) denotes the labels of the vertices of the triangle Km.
Furthermore, the coordinates of each vertex T(α,m) are given by

Z
(
i,T(α,m)

)
, i = 1, 2.

116

Once these coordinates are available, we can construct the so-called local
shape functions φα, (α = 1, 2, 3): we define φα as a linear function on Km

with the property that

φα
(
NT(β,m)

)
=

{
1, if α = β,

0, if α 6= β.

An example of a local shape function is displayed in Figure 9.4.

φ1

3

1

2

K
m

Figure 9.4: An example of the local shape function φ1 for the triangle Km.

Thus, for the triangle Km, we compute the element stiffness matrix Am =
{Amα,β}3

α,β=1 as

Amα,β =

∫
Km

〈∇φα,∇φβ〉dx. (9.3)

We observe that Am is a symmetric, 3× 3 matrix. We also remark that the
integral in Equation (9.3) is usually computed using a quadrature rule.

In a similar manner, we compute the element load vector Fm = {Fm
α }3

α=1

corresponding to the triangle Km as

Fm
α =

∫
Km

f(x)φα(x)dx.

Finally, we can loop over all m = 1, . . . ,M and calculate the element stiff-
ness matrix Am and the element load vector Fm for each triangle in the
triangulation Th.

Remark 9.1 (Parametric Finite Elements)

In practice, one usually considers a reference element K̂ and a mapping
ΦK : K̂ → K that maps the reference element K̂ to any given triangle
K ∈ Th as shown in Figure 9.5.

117

Figure 9.5: Reference element K̂ and the mapping ΦK for some triangle K ∈ Th.

Here, the function ΦK is an affine mapping with the property that for all
x̂ ∈ K̂ it holds that

x = ΦK(x̂) =
(
Nb −Na Nc −Na

)
x̂+Na

= JK x̂+Na.

where Na,Nb,Nc are the vertices of the triangle K ∈ Th.

All computations involving the element load vector and element stiffness
matrix associated with the triangle K are then performed on the reference
element K̂, i.e.,

FK
α =

∫
K

f(x)φα(x)dx =

∫
K̂

f
(
ΦK(x̂)

)
φ̂α(x̂)|detJK |dx̂.

and similarly,

AKα,β =

∫
K

〈∇φα,∇φβ〉dx

=

∫
K̂

〈
J−ᵀK ∇̂φ̂α, J

−ᵀ
K ∇̂φ̂β

〉 ∣∣∣detJK

∣∣∣dx̂.
where φ̂α, (α = 1, 2, 3) are the local shape functions of the reference element
and it can be checked that φα(x) = φ̂α(x̂) and ∇φα(x) = J−ᵀK ∇̂φ̂α(x̂). Here,
J−ᵀK is a short hand notation for (J−1

K)
ᵀ
.

Step 3 Assembly

We next have the key step where the results of the local computations
on each triangle are assembled (combined) together to obtain the global

118

stiffness matrix A and the global load vector F . We use the following
pseudo-code (MATLAB notation) to illustrate the assembly process:

Pseudo-Code

A=zeros(N,N);

f=zeros(N);

for m = 1 : M (loop over all triangles)

fetch Am = {Amα,β}, Fm = {Fm
α }, α, β = 1, 2, 3.

A
(
T(α,m),T(β,m)

)
= A

(
T(α,m),T(β,m)

)
+Amα,β, α, β = 1, 2, 3.

F
(
T(α,m)

)
= F

(
T(α,m)

)
+ Fm

α , α = 1, 2, 3.

end;

Thus, the non-zero contributions of each triangle Km, (m = 1, . . . ,M) are
assembled into the global stiffness matrix and the global load vector.

Remark 9.2 For clarity of exposition, we have used a dense matrix format
for the global stiffness matrix A in the above pseudo-code. In practice, for
the sake of computational efficiency, one should always use a sparse matrix
format for A.

Remark 9.3 In the case of homogenous boundary conditions, all contri-
butions from boundary nodes should be skipped when assembling the global
stiffness matrix A and the global load vector F (i.e. the corresponding rows
and columns should be skipped). In pseudo-code this reads:

Pseudo-Code

compute A and F from above

compute FreeDofs

A=A(FreeDofs,FreeDofs)

F=F(FreeDofs)

Here, FreeDofs is the index set of all interior nodes. For example for the
mesh in Figure 9.3, we have FreeDofs= {6, 7}.

119

9.1. Treatment of Inhomogeneous Boundary Conditions

Step 4 Solving the Linear System

Once the global stiffness matrix A and the global load vector F have been
obtained, the matrix equation (9.2) can be solved using either a direct solver
or an iterative method. More information on such methods can be found
in any standard textbook on numerical linear algebra.

Finally, once we have obtained the vector of unknowns U = {ui}Ni=1, the
FEM approximation of the solution uh can be computed as

uh(x) =
N∑
i=1

uiφi(x).

9.1 Treatment of Inhomogeneous Boundary Conditions

We consider the following inhomogeneous boundary value problem involving
the Poisson equation:

−∆u = f in Ω,

u = g on ∂Ω,
(9.4)

where g : ∂Ω→ R is the given boundary data.

We can approach this problem as follows: we consider an extension of the
Dirichlet data:

g̃ : Ω→ R, g̃
(
∂Ω
)

= g.

Next, we define the function u0 : Ω→ R as

u0 = u− g̃.

This implies that

u =u0 + g̃,

and furthermore,

u0|∂Ω = u|∂Ω − g̃ = g − g = 0.

Thus, (9.4) can be rewritten as

f = −∆u = −∆
(
u0 + g̃

)
.

We may therefore consider the following variational problem:

120

9.1. Treatment of Inhomogeneous Boundary Conditions

Find u0 ∈ H1
0

(
Ω
)

such that for all v ∈ H1
0 (Ω) it holds that(

u0, v
)
H1

0 (Ω)
=
(
f, v
)
L2(Ω)

−
(
g̃, v
)
H1

0 (Ω)
(9.5)

where
(
·, ·
)
H1

0 (Ω)
is the H1

0 inner product and
(
·, ·
)
L2(Ω)

is the L2 inner prod-

uct.

Note that (9.5) is very similar to the weak form of the Poisson equation
with homogeneous boundary conditions (8.3). Indeed, only the right side
of both equations is different.

We can now solve the variational problem (9.5). The solution u of the
inhomogeneous boundary value problem (9.4) is then given by u = u0 + g̃.

9.1.1 Finite Element Formulation

We now mimic the preceding calculations on the discrete level:

We define g̃h : Ω→ R as the continuous, piecewise linear function with the
property that for all nodes {xi}Ni=1 of the triangulation it holds that

g̃h(xi) =

{
g(xi) if xi is a boundary node,

0 otherwise.

Thus, it holds that

g̃h(x) =
∑

xi is bd.
node

g(xi)φi(x).

Note that since the function g is not necessarily a piecewise linear function,
we don’t have g|∂Ω = g̃h|∂Ω, in general, but only g|∂Ω ≈ g̃h|∂Ω.

Then, the variational formulation of the Finite Element method is of the
form:

Find u0,h ∈ Vh such that for all v ∈ Vh it holds that(
u0,h, v

)
H1

0 (Ω)
=
(
f, v
)
L2(Ω)

−
(
g̃h, v

)
H1

0 (Ω)
. (9.6)

It is now a simple matter of solving the above variational problem. The
solution uh is then given by

uh = u0,h + g̃h.

121

9.1. Treatment of Inhomogeneous Boundary Conditions

Note that we can also write the solution uh as

uh(x) =
N∑
i=1

uiφi(x),

where ui = g(xi) for all boundary nodes xi.

Algorithmically, the finite element formulation described above leads to the
following pseudo-code:

Pseudo-Code

compute A and F from above

compute FreeDofs

U=zeros(N,1)

U(i)=g(xi) for all boundary nodes xi.

F=F−AU

A=A(FreeDofs,FreeDofs)

F=F(FreeDofs)

Solve AU(FreeDofs)=F

122

10 Parabolic Partial Differential Equations

The Heat equation (or diffusion equation) is the prototypical example of a
parabolic partial differential equation. Let Ω ⊆ Rm for some m ∈ N, let
T ∈ [0,∞) be some fixed, final time and let u0 : Ω → R be some known
function. Then the heat equation in several space dimensions is given by

ut −∆u = 0, on Ω× (0, T),

u(x, 0) = u0(x), on Ω.
(10.1)

Note that Equation (10.1) must be supplemented with suitable boundary
conditions.

We begin by considering the case of one spatial dimension (m = 1) and set
the domain Ω = (0, 1). Then, the heat equation in one spatial dimension is
given by

ut − uxx = 0, on (0, 1)× (0, T),

u(x, 0) = u0(x), on (0, 1),

u(0, t) = u(1, t) = 0, on (0, T),

(10.2)

where we have assumed homogeneous Dirichlet boundary conditions.

10.1 Exact Solutions to the Heat Equation

In order to obtain an exact, analytical solution for the heat equation, we
may use the so-called method of separation of variables. We therefore use
the ansatz

u = u(x, t) = T (t)X (x).

Then, it holds that

ut = T ′(t)X (x),

uxx = T (t)X ′′(x).

123

10.1. Exact Solutions to the Heat Equation

Therefore, the PDE (10.2) reduces to

T ′(t)X (x) = T (t)X ′′(x),

and hence, it holds that
T ′(t)
T (t)

=
X ′′(x)

X (x)
. (10.3)

Next, observe that the left side of Equation (10.3) is a function of only time
(t) and the right side of Equation (10.3) is a function of only the spatial
variable (x). Thus, Equation (10.3) can only be satisfied if there exists some
constant λk ∈ R such that for all x ∈ (0, 1) and for all t ∈ (0, T) it holds
that

T ′(t)
T (t)

=
X ′′(x)

X (x)
= −λk. (10.4)

Now, observe that Equation (10.4) combined with the boundary conditions
from (10.2) implies that

X ′′(x) + λkX (x) = 0, for x ∈ (0, 1),

X (0) = X (1) = 0.
(10.5)

Similarly, Equation (10.4) also implies that

T ′(t) + λkT (t) = 0, for t ∈ (0, T), (10.6)

Thus, using the separation of variables ansatz has allowed us to reduce the
PDE (10.2) to a pair of ODEs, which can be solved exactly. Indeed, it can
be shown that the ODE (10.5) has a general solution given by

Xk(x) = sin(kπx), λk = (kπ)2 ∀k ∈ Z. (10.7)

Plugging (10.7) into the ODE (10.6), we obtain that for all k ∈ Z it holds
that

T ′(t) = −(kπ)2T (t) =⇒ T (t) = e−(kπ)2t. (10.8)

Finally, combining (10.7) and (10.8) into the separation of variables ansatz,
we obtain that

u(x, t) = X (x)T (t) = e−(kπ)2t sin(kπx),

is a general solution of the PDE

ut − uxx = 0, on (0, 1)× (0, T),

u(0, t) = u(1, t) = 0, on (0, T).

124

10.1. Exact Solutions to the Heat Equation

It now remains to obtain a unique, particular solution for the given initial
data. To this end, we observe that for all k,m ∈ N it holds that∫ 1

0

sin(kπx) sin(mπx)dx =

{
0, if k 6= m,
1
2
, if k = m.

Hence, the set {sin(kπx)}k∈N (known as the Fourier sine series) forms a ba-
sis for the function space L2

(
(0, 1)

)
. Thus, for any function f ∈ L2

(
(0, 1)

)
,

we have the Fourier expansion given by

f(x) =
∞∑
k=1

fk sin(kπx),

where

fk = 2

∫ 1

0

f(x) sin(kπx)dx.

Thus, for any initial condition u0 in (10.2) such that u0 ∈ L2
(
(0, 1)

)
it holds

that

u0(x) =
∞∑
k=1

u0
k sin(kπx),

where

u0
k = 2

∫ 1

0

u0(x) sin(kπx)dx.

Note that the convergence of the above infinite series is a consequence of
the theory of Fourier series.

It can now be shown that the solution u of the heat equation in one spatial
dimension (10.2) is given by

u(x, t) =
∞∑
k=1

u0
ke
−(kπ)2t sin(kπx). (10.9)

Indeed, we observe that the time derivative and second spatial derivative
of u are given by

ut =
∞∑
k=1

−(kπ)2u0
ke
−(kπ)2t sin(kπx),

uxx =
∞∑
k=1

−(kπ)2u0
ke
−(kπ)2t sin(kπx),

125

10.1. Exact Solutions to the Heat Equation

and therefore ut = uxx. Furthermore, for all t ∈ (0, T) it holds that

u(0, t) = u(1, t) = 0.

Finally, for all x ∈ (0, 1) it holds that

u(x, 0) =
∞∑
k=1

u0
k sin(kπx) = u0(x).

In fact, it can be shown that (10.9) is the unique solution of the heat
equation (10.2).

10.1.1 Evaluation of the Exact Solution

The following algorithm can be used to evaluate the exact solution (10.9)
of the heat equation (10.2):

Given u0 ∈ L2
(
(0, 1)

)
Step 1

Expand u0 using the truncated Fourier series i.e.,

uN0 (x) =
N∑
k=1

u0
k sin(kπx).

We remark that the error |u0 − uN0 | is small for large values of N if the
function u0 is smooth and satisfies u0(0) = u0(1) = 0.

Next, in order to calculate the coefficients {u0
k}Nk=1, we use a quadrature

rule to approximate

u0
k = 2

∫ 1

0

u0(x) sin(kπx)dx.

Step 2

The approximate solution to the heat equation (10.2) can then be obtained
by truncating the formula (10.9):

uN(x, t) =
N∑
k=1

u0
ke
−(kπ)2t sin(kπx).

Note that this implies that there are now two sources of error in the ap-
proximate solution:

126

10.2. Energy Estimate

• Error due to the finite-truncation of the Fourier sine series.

• Error due to the use of quadrature rules to approximate integrals.

Given these multiple sources of errors, we might as well replace the ex-
act solution with an approximate solution obtained using some numerical
method, which can then be applied in a more general setting.

In order to design suitable numerical method however, we require some
qualitative properties of solutions to the heat equation (10.2).

10.2 Energy Estimate

Let u be a solution of the heat equation (10.2). We define the energy
function E : [0, T]→ R as

E(t) :=
1

2

∫ 1

0

|u(x, t)|2dx.

It then follows that

dE
dt

=
1

2

∫ 1

0

(u2)tdx

=

∫ 1

0

uutdx (Using the Chain Rule)

=

∫ 1

0

uuxxdx (Using Equation (10.2))

= −
∫ 1

0

u2
xdx+ uux|10 (Integration by parts)

= −
∫ 1

0

u2
xdx (Using Boundary Conditions).

We can thus conclude that

dE
dt

= −
∫ 1

0

u2
xdx ≤ 0.

Therefore, for all t ∈ (0, T) it holds that

E(t) ≤ E(0). (10.10)

In other words, the energy of the solution u to the heat equation (10.2)
decreases in time.

127

10.3. Maximum Principles

10.2.1 Consequence of the Energy Estimate

Uniqueness

Let u, ū be two solutions of the heat equation (10.2) for the same initial
and boundary conditions, and let w := u− ū.

Then, clearly w satisfies the following heat equation:

wt − wxx = 0, on (0, 1)× (0, T),

w(x, 0) ≡ 0, on (0, 1),

w(0, t) = w(1, t) = 0, on (0, T).

Next, we define the energy function Ē associated with w as

Ē(t) =
1

2

∫ 1

0

w2(x, t)dx.

The energy estimate (10.10) then implies that for all t ∈ (0, T) it holds that

Ē(t) ≤ Ē(0).

Therefore, it follows that for all t ∈ (0, T) it holds that∫ 1

0

w2(x, t)dx ≤
∫ 1

0

w2(x, 0)dx

=⇒
∫ 1

0

w2(x, t)dx ≤ 0 (Using the Initial Conditions)

=⇒ w(x, t) ≡ 0

=⇒ u(x, t) = ū(x, t). (Using the Definition of w).

Hence, the heat equation (10.2) has a unique solution.

10.3 Maximum Principles

We observe that the energy estimate described in the previous section im-
plies a bound on the L2 norm of the solution u to the heat equation (10.2)
at any given time t ∈ (0, T):

sup
0≤t≤T

‖u(·, t)‖L2((0,1)) ≤ ‖u0‖L2((0,1)).

128

10.3. Maximum Principles

In addition to satisfying an L2 bound, the solution u also satisfies a max-
imum principle, which provides bounds on the L∞ (maximum) norm of
the solution. Indeed, we have the following lemma regarding a maximum
principle:

Lemma 10.1 (Maximum Principle) Let u be a solution of the heat equa-
tion (10.2). Then for all x ∈ [0, 1] and for all t ∈ [0, T] it holds that

min
(
0,min

x̃
(u0(x̃))

)
≤ u(x, t) ≤ max

(
0,max

x̃
(u0(x̃))

)
. (10.11)

We observe that this lemma implies that the maximum (and minimum)
of the solution u of the heat equation (10.2) is attained on the parabolic
boundary i.e., the initial line t = 0 or the two side boundaries x = 0, x = 1,
as shown in Figure 10.1.

Figure 10.1: Domain for the heat equation (10.2) with the parabolic boundary
in red.

Note that for simplicity, we will restrict our proof to the maximum principle
but the minimum principle can be proven analogously.

Proof The proof proceeds by contradiction. Let x0 ∈ (0, 1) and t0 ∈ (0, T)
(see Figure 10.1) and assume that (x0, t0) is a strict maximal point of the
function u. In other words, we assume that for all x ∈ (0, 1) and for all
t ∈ (0, T), it holds that

u(x0, t0) > u(x, t).

129

10.3. Maximum Principles

Clearly, it holds that

ut(x0, t0) ≡ 0,

uxx(x0, t0) < 0.
(
(x0, t0) is a maximal point

)
,

and hence,
ut(x0, t0)− uxx(x0, t0) > 0.

This is a contradiction as u solves the heat equation (10.2). Thus, a strict
maximum cannot be attained at an interior point (x0, t0) ∈ (0, 1)× (0, T).

Next, let x∗ ∈ (0, 1) and suppose that a strict maximum of the function u
is attained at the point (x∗, T) (shown in Figure 10.1), where T is the final
time.

Clearly, it holds that
uxx(x

∗, T) < 0

and furthermore,

ut(x
∗, T) = lim

h+→0

u(x∗, T)− u(x∗, T − h)

h
> 0.

Hence, one again we have that

ut(x0, t0)− uxx(x0, t0) > 0,

which contradicts the fact that u solves the heat equation (10.2). Thus, a
strict maximum cannot be attained at the final time t = T .

We can therefore conclude that a strict maximum of the function u can only
be attained at the parabolic boundary (shown in Figure 10.1). However, we
have not ruled out the possibility of a non-strict maximum at the interior
point (x0, t0) or the point (x∗, T). To this end, we proceed as follows:

Let ε > 0 and define the function uε : [0, 1]× [0, T]→ R as

uε(x, t) = u(x, t)− εt.

Assume that for a fixed ε, the function uε attains a maximum at the point
(x0, t0). It then follows that

0 = uεt(x0, t0) = ut(x0, t0)− ε
=⇒ ut(x0, t0) = ε > 0.

130

10.3. Maximum Principles

Moreover, it also holds that

uxx(x0, t0) = uεxx(x0, t0) ≤ 0

=⇒ uxx(x0, t0) ≤ 0.

Hence, it follows that

ut(x0, t0)− uxx(x0, t0) ≥ ε > 0,

which once again contradicts the fact that u solves the heat equation (10.2).
Therefore, uε cannot attain a maximum at the point (x0, t0).

A similar argument also holds for the point (x∗, T). We therefore conclude
that for all ε > 0 it holds that

max
0≤x≤1,
0≤t≤T

uε(x, t) ≤ max
(
0,max

x
(uε(x, 0))

)
,

and therefore since

uε(x, 0) = u(x, 0)− ε · 0 = u(x, 0),

it holds that

max
0≤x≤1,
0≤t≤T

uε(x, t) ≤ max
(
0,max

x
(u(x, 0))

)
.

As the right side of the last inequality is now independent of ε, we can take
the limit ε→ 0 on the left side to obtain

max
0≤x≤1,
0≤t≤T

u(x, t) ≤ max
(
0,max

x
(u0(x))

)
.

This proves the maximum principle. �

We are now in a position to discuss numerical methods for approximating
solutions to the heat equation (10.2). Given the above results, we would like
the approximate solutions produced by our numerical methods to satisfy a
discrete version of the energy inequality and/or the maximum principle.

131

10.4. Finite Difference Schemes for the Heat Equation

10.4 Finite Difference Schemes for the Heat Equation

We consider the one-dimensional heat equation:

ut − uxx = 0, on (0, 1)× (0, T),

u(x, 0) = u0(x), on (0, 1),

u(0, t) = u(1, t) = 0, on (0, T),

(10.12)

In order to approximate solutions to the heat equation (10.12), we derive a
finite difference scheme using the following steps:

Step 1 Discretising the Domain

Let the grid size ∆x > 0 and let N = 1
∆x
−1. Then we discretise the spatial

domain [0, 1] into N + 2 equally spaced points by setting

x0 = 0,

xj = j∆x, j = 1, . . . , N,

xN+1 = 1.

Similarly, let the time step ∆t > 0 and let M = T
∆t
− 1. Then we discretise

the temporal domain [0, T] into M + 2 equally spaced points by setting

t0 = 0,

tn = n∆t, n = 1, . . . ,M,

tM+1 = T.

An example of the resulting grid is displayed in Figure 10.2.

Step 2 Discretising the Solution u

We next approximate the function u, which solves the heat equation (10.12),
with point values by setting

Un
j ≈ u(xj, t

n).

Step 3 Discretising the Derivatives

In addition to discretising the solution u, it is also necessary to discretise
the spatial and temporal derivatives of the function u.

Spatial derivative Similar to the case of the Poisson equation, we approx-
imate the spatial derivative using a central difference approximation:

uxx(xj, t
n) ≈

Un
j+1 − 2Un

j + Un
j−1

∆x2
.

132

10.4. Finite Difference Schemes for the Heat Equation

t

xj = j∆xx0 = 0

t0 = 0

∆t

v0j

vnN+1vnj

vM+1

j
tM+1

= T

tn = n∆t vn0

xN+1 = 1

∆x

Figure 10.2: An example of a grid for the one-dimensional heat equation (10.12)

Temporal derivative There are many possible choices for approximating
the time derivative of the solution u. The simplest choice is to use a
forward difference approximation:

ut(xj, t
n) ≈

Un+1
j − Un

j

∆t
.

Step 4 The Finite Difference Scheme

A finite difference for approximating solutions to the heat equation (10.12)
is then given by

Un+1
j − Un

j

∆t
−
Un
j+1 − 2Un

j + Un
j−1

∆x2
= 0, (10.13)

for all j = 1, . . . , N and for all n = 0, . . .M .

Defining the constant λ = ∆t
∆x2

, we can rewrite (10.13) as

Un+1
j = (1− 2λ)Un

j + λUn
j+1 + λUn

j−1.

Furthermore, the initial conditions and the boundary conditions of the heat
equation (10.12) can be implemented by setting

U0
j = u(xj, 0) = u0(xj), ∀ 1 ≤ j ≤ N,

Un
0 = Un

N+1 ≡ 0 ∀ 0 ≤ n ≤M + 1.

133

10.4. Finite Difference Schemes for the Heat Equation

The implementation of the finite difference scheme (10.13) is straightfor-
ward. Given the approximate solution values {Un

j }1≤j≤N at the time level

tn, we compute the approximate solutions values {Un+1
j }1≤j≤N at the next

time level tn+1 using the update formula (10.13) and the boundary condi-
tions.

Remark 10.2 (Terminology)

The finite difference scheme (10.13) is termed an Explicit finite difference
scheme since the Explicit (Forward) Euler method is used for time stepping.

Remark 10.3 (Notation) In order to simplify the notation in some fu-
ture sections, we introduce the following notation

Forward difference in space: D+
xw

n
j =

wnj+1 − wnj
∆x

Backward difference in space: D−xw
n
j =

wnj − wnj−1

∆x

Forward difference in time: D+
t w

n
j =

wn+1
j − wnj

∆t

Backward difference in time: D−t w
n
j =

wnj − wn−1
j

∆t

The finite difference scheme (10.13) can then be recast as

D+
t U

j
n −D−x D+

xU
j
n = 0, (10.14)

for all j = 1, . . . , N and for all n = 0, . . .M .

10.4.1 Numerical Results

Example 1

As a first numerical example, we consider the following boundary value
problem involving the one-dimensional heat equation:

ut − uxx = 0, on (0, 1)× (0, T),

u(x, 0) = sin(2πx), on (0, 1),

u(0, t) = u(1, t) = 0, on (0, T),

(10.15)

It can be shown that the exact solution to the BVP (10.15) is given by
u(x, t) = e−4π2t sin(2πx). We use the explicit finite difference method
(10.13) to approximate solutions to this problem for different values of the
time step ∆t and grid size ∆x.

134

10.4. Finite Difference Schemes for the Heat Equation

Figure 10.3: Exact solution plots of the BVP (10.15) at different times t.

Figure 10.3 displays the exact solution of the BVP (10.15) at different times.
Clearly, the solution decays to zero over time.

Figure 10.4 displays the exact and approximate solution at time t = 0.1,
and indicates that the quality of the solution approximation improves as
the grid spacing and time step are refined.

(a) ∆x = 1
6 , ∆t = 1

80 =⇒ λ = 0.45. (b) ∆x = 1
20 , ∆t = 1

800 =⇒ λ = 0.5.

Figure 10.4: Exact solution and approximate solution plots at time t = 0.1 for the
BVP (10.15) using the explicit finite difference method for two different values
of ∆x,∆t.

Example 2

As a second numerical example, we consider the following boundary value

135

10.4. Finite Difference Schemes for the Heat Equation

problem involving the one-dimensional heat equation:

ut − uxx = 0, on (0, 1)× (0, T),

u(x, 0) = min
(
2x, 2− 2x

)
, on (0, 1),

u(0, t) = u(1, t) = 0, on (0, T),

(10.16)

The exact solution to the BVP (10.16) can be calculated using the Fourier
sine series and is given by

u(x, t) =
∞∑

k even, k=1

(
(−1)

k−1
2

k2π2
8 sin(kπx)e−k

2π2t

)
.

We once again use the explicit finite difference method (10.13) to approxi-
mate solutions to this problem for different values of the time step ∆t and
grid size ∆x.

Figure 10.5: 3-dimensional plot of the exact solution to the BVP (10.16).

Figure 10.6: Exact solution plots of the BVP (10.16) at different times t.

Figure 10.5 displays a 3-dimensional plot of the exact solution of the BVP
(10.15) as a function of space (x) and time (t). In addition, Figure 10.6

136

10.4. Finite Difference Schemes for the Heat Equation

displays the exact solution of the BVP (10.16) at different times. Once
again, we observe that the solution decays to zero over time.

(a) ∆x = 1
50 , ∆t = 1

5000 =⇒ λ = 0.5. (b) ∆x = 1
50 , ∆t = 1

4975 =⇒ λ = 0.503.

(c) ∆x = 1
50 , ∆t = 2

9091 =⇒ λ = 0.55.

Figure 10.7: Exact solution and approximate solution plots at time t = 0.1 for
the BVP (10.16) using the explicit finite difference method for 3 different values
of ∆t, λ.

Figure 10.7 displays the exact and approximate solution at time t = 0.1 for
different values of the time step ∆t and the parameter λ. We immediately
observe that the approximate solution produced by the finite difference
scheme (10.13) can become unstable for certain values of ∆t and λ.

The results of the numerical experiments therefore indicate that the quality
of the solution approximation strongly depends on the choice of the time
step ∆t or, equivalently, the choice of the parameter λ.

In order to gain a clearer understanding of these results, it is necessary to

137

10.4. Finite Difference Schemes for the Heat Equation

perform a stability analysis of the finite difference scheme (10.13).

10.4.2 Discrete Energy Stability

Recall that we have previously shown in Section 10.2 that the exact solutions
of the heat equation (10.2) are energy stable, i.e., for all t ∈ (0, T), it holds
that

E(t) ≤ E(0), (10.17)

where

E(t) =
1

2

∫ 1

0

|u(x, t)|2dx.

Therefore, we should analyse the approximate solutions produced by the
finite difference scheme to determine if these solutions satisfy a discrete
version of the energy inequality (10.17).

To this end, we define for all n = 0, . . . ,M + 1, the discrete energy En as

En =
∆x

2

N∑
j=1

(
Un
j

)2
. (10.18)

Next, we state some elementary identities that we require for our calcula-
tions. We remark that these identities are straightforward to prove.

Discrete Chain Rule

For all n = 0, . . . ,M and for all j = 1, . . . , N , it holds that

wnj D+
t w

n
j =

1

2
D+
t

((
wnj
)2
)
− ∆t

2

(
D+
t w

n
j

)2

. (10.19)

Proof By definition, it holds that

wnj D+
t w

n
j =

wnj
∆t

(
wn+1
j − wnj

)
=

1

2∆t

(
2wnj w

n+1
j − 2

(
wnj
)2 −

(
wn+1
j

)2
+
(
wn+1
j

)2
)

=
1

2∆t

((
wn+1
j

)2 −
(
wnj
)2 −

(
wn+1
j − wnj

)2
)

=
1

2
D+
t

((
wnj
)2
)
− ∆t

2

(
D+
t w

n
j

)2

. �

138

10.4. Finite Difference Schemes for the Heat Equation

Summation by Parts

For all n = 0, . . . ,M + 1 and for all j = 1, . . . , N , it holds that

N∑
j=1

wnj D−x D+
xw

n
j =−

N∑
j=0

(
D+
xw

n
j

)2

+
1

∆x

(
wnN+1D+

xw
n
N − wn0 D+

xw
n
0

)
.

(10.20)

The summation by parts formula (10.20) can be proven using math-
ematical induction.

Let us now consider the finite difference scheme (10.14) and mimic the
derivation of the energy inequality for the continuous case by multiplying
both sides of Equation (10.14) with vnj . We then obtain

Un
j D+

t U
n
j = Un

j D−x D+
xU

n
j .

The discrete chain rule (10.19) then implies that

1

2
D+
t

((
Un
j

)2
)

=
∆t

2

(
D+
t U

n
j

)2

+ Un
j D−x D+

xU
n
j .

Next, using (10.14) to expand the first term on the right side, we obtain

1

2
D+
t

((
Un
j

)2
)

=
∆t

2

(
D−x D+

xU
n
j

)2

+ Un
j

)2

+ Un
j D−x D+

xU
n
j

=
∆t

2∆x2

(
D+
xU

n
j −D−xU

n
j

)2

+ Un
j D−x D+

xU
n
j , (10.21)

where the last equation is a consequence of the following identity:

D−x D+
xU

n
j =

1

∆x

(
D+
xU

n
j −D−xU

n
j

)
.

We now multiply both sides of Equation (10.21) with ∆x∆t and sum over
all j = 1, . . . , N to obtain

∆x∆t

2

N∑
j=1

D+
t

((
Un
j

)2
)

︸ ︷︷ ︸
T1

=
∆t2

2∆x

N∑
j=1

(
D+
xU

n
j −D−xU

n
j

)2

︸ ︷︷ ︸
T2

+ ∆x∆t
N∑
j=1

Un
j D−x D+

xU
n
j︸ ︷︷ ︸

T3

.

139

10.4. Finite Difference Schemes for the Heat Equation

We can now attempt to simplify each term separately:

T1 :=
∆x∆t

2

N∑
j=1

D+
t

((
Un
j

)2
)

=
∆x

2

N∑
j=1

(
Un+1
j

)2 − ∆x

2

N∑
j=1

(
Un
j

)2

= En+1 − En.

T3 :=∆x∆t
N∑
j=1

Un
j D−x D+

xU
n
j

=−∆x∆t
N∑
j=0

(
D+
xU

n
j

)2

(using summation by parts (10.20) and B.C.).

T2 :=
∆t2

2∆x

N∑
j=1

(
D+
xU

n
j −D−xU

n
j

)2

≤ ∆t2

∆x

N∑
j=1

(
D+
xU

n
j

)2

+
∆t2

∆x

N+1∑
j=1

(
D−xU

n
j

)2

≤ ∆t2

∆x

N∑
j=0

(
D+
xU

n
j

)2

+
∆t2

∆x

N+1∑
j=1

(
D−xU

n
j

)2

.

This inequality is a consequence of the following simple algebraic relation:
for all a, b ∈ R it holds that

(a− b)2 ≤ 2(a2 + b2).

Next, observe that a simple change of indices implies that

N∑
j=0

(
D+
xU

n
j

)2

=
N+1∑
j=1

(
D−xU

n
j

)2

,

and therefore it follows that

T2 ≤
2∆t2

∆x

N∑
j=0

(
D+
xU

n
j

)2

.

Hence, combining the simplified forms of T1, T2, T3, we obtain

En+1 ≤ En +

(
2∆t2

∆x
−∆x∆t

) N∑
j=0

(
D+
xU

n
j

)2

. (10.22)

140

10.4. Finite Difference Schemes for the Heat Equation

Now, observe that under the assumption that

2∆t2

∆x
−∆x∆t ≤ 0

⇐⇒ ∆t

∆x2
≤ 1

2
⇐⇒ λ ≤ 1

2
, (10.23)

it holds that
En+1 ≤ En ≤ . . . ≤ E0.

In other words, under the assumption that λ ≤ 1
2
, the discrete energy of

the approximate solution does not increase over time. On the other hand,
if λ > 1

2
, then energy is being added to the approximate solution at each

time step and therefore the solution must be unstable.

The condition (10.23) is known as the Courant-Friedrichs-Levy (CFL) con-
dition. Clearly, the explicit finite difference scheme (10.13) is stable only
if the CFL condition is satisfied. The scheme (10.13) is therefore termed a
conditionally stable scheme.

Note that the CFL condition (10.23) is very restrictive. Indeed, the time
step ∆t needs to satisfy the relation ∆t ≤ 1

2
∆x2, and thus for reasonably

small grid spacing ∆x, we need to take very small time steps ∆t.

10.4.3 Discrete Maximum Principle

It is also possible to obtain the CFL condition by imposing the constraint
that approximate solutions produced by the finite difference scheme (10.13)
must satisfy a discrete maximum principle.

To this end, recall that the finite difference scheme (10.13) can be written
in the form

Un+1
j = (1− 2λ)Un

j + λUn
j+1 + λUn

j−1. (10.24)

Next, assume that the CFL condition is satisfied, i.e.,

λ =
∆t

∆x2
≤ 1

2
.

Let Ūn
j = max

(
Un
j−1, U

n
j , U

n
j+1

)
and observe that by definition, it holds that

Un
j−1 ≤ Ūn

j , Un
j ≤ Ūn

j , Un
j+1 ≤ Ūn

j .

141

10.4. Finite Difference Schemes for the Heat Equation

Hence, using the fact that λ > 0 and 1− 2λ ≥ 0, Equation (10.24) implies
that

Un+1
j ≤ λŪn

j + (1− 2λ)Ūn
j + λŪn

j

= Ūn
j ,

or equivalently,

Un+1
j ≤ max

(
Un
j−1, U

n
j , U

n
j+1

)
.

Similarly, let
¯
Un
j = min

(
Un
j−1, U

n
j , U

n
j+1

)
. Then, Equation (10.24) implies

that
Un+1
j ≥

¯
Un
j = min

(
Un
j−1, U

n
j , U

n
j+1

)
.

Thus, under the CFL condition, the approximate solution produced by the
finite difference scheme (10.13) satisfies the following discrete maximum
principle:

min
(
Un
j−1, U

n
j , U

n
j+1

)
≤ Un+1

j ≤ max
(
Un
j−1, U

n
j , U

n
j+1

)
,

for all n = 0, . . . ,M and for all j = 1, . . . , N .

In addition, iterating over all indices n and j, we obtain that the approxi-
mate solution Un+1

j satisfies the inequality

min
(
0,min

j
U0
j

)
≤ Un+1

j ≤ max
(
0,max

j
U0
j

)
, (10.25)

for all n = 0, . . . ,M and for all j = 1, . . . , N .

Inequality (10.25) is a discrete version of the maximum principle. Approxi-
mate solutions produced by the finite difference scheme (10.13) will satisfy
(10.25) if the CFL condition (10.23) holds.

10.4.4 Truncation Error

Let unj = u(xj, t
n), where u is the exact solution of the heat equation (10.12).

Then the truncation error of the finite difference scheme (10.13) is defined
as

τnj =
un+1
j − unj

∆t
−
unj−1 − 2unj + unj+1

∆x2
,

or equivalently,

τnj = D+
t u

n
j −D−x D+

x u
n
j .

142

10.5. An Implicit Finite Difference Scheme

It can be shown that there exists some constant C ∈ R such that for all
n = 0, . . . ,M and for all j = 1, . . . , N , the truncation error τnj satisfies the
bound

|τnj | ≤ C
(

∆t+ ∆x2
)
.

Furthermore, we can use the above bound on the truncation error along with
the results on energy stability to prove the following convergence result:
there exists some C̄ ∈ R such that for all ∆t,∆x > 0 that satisfy the CFL
condition and for all n = 0, . . . ,M + 1 it holds that√√√√∆x

2

N∑
j=1

∣∣unj − Un
j

∣∣2 ≤ C̄
(

∆t+ ∆x2
)
.

Hence, the explicit finite difference scheme (10.13) has a first-order rate of
convergence in time and a second-order rate of convergence in space.

10.5 An Implicit Finite Difference Scheme

Unfortunately, the CFL condition (10.23) is extremely constraining as the
relation ∆t ≈ ∆x2 results in very small time steps. To remedy this, we can
instead use an implicit finite difference scheme:

D−t U
n+1
j = D−x D+

xU
n+1
j , (10.26)

for all j = 1, . . . , N and for all n = 0, . . .M , where we have used backward
differences to approximate the time derivative.

Equation (10.26) can be rewritten as

Un+1
j − Un

j

∆t
=
Un+1
j−1 − 2Un+1

j + Un+1
j+1

∆x2
,

or equivalently,

−λUn+1
j−1 + (1 + 2λ)Un+1

j − λUn+1
j+1 = Un

j ,

for all j = 1, . . . , N and for all n = 0, . . .M .

Note that at any given time level tn, the implicit finite difference scheme
(10.26) reduces to a matrix equation:

AUn+1 = F n, (10.27)

143

10.5. An Implicit Finite Difference Scheme

where Un+1 =
{
Un+1
j

}N
j=1

is the vector of unknowns, F n =
{
Un
j

}N
j=1

is the

right-hand side and A = {Ai,j}Ni,j=1 is the tridiagonal N ×N matrix given
by

A =


1 + 2λ −λ 0 . . . 0

−λ 1 + 2λ −λ . . .
...

0
. 0

...
. . . −λ 1 + 2λ −λ

0 . . . 0 −λ 1 + 2λ

 .

Remark 10.4 (Terminology)

The finite difference scheme (10.26) is termed an Implicit finite difference
scheme since the Implicit (Backward) Euler method is used for time step-
ping.

10.5.1 Discrete Energy Stability

Similar to the case of the explicit finite difference scheme (10.13), we per-
form an energy stability analysis of the approximate solutions produced by
the implicit finite difference scheme (10.26).

To this end, we multiply both sides of Equation (10.26) with Un+1
j ∆t∆x

and sum over all j = 1, . . . , N to obtain

∆x∆t
N∑
j=1

Un+1
j D−t U

n+1
j =∆x∆t

N∑
j=1

Un+1
j D−x D+

xU
n+1
j

Next, we apply a variant of the discrete chain rule (10.19):

Un+1
j D+

t U
n+1
j =

1

2
D+
t

((
Un+1
j

)2
)
− ∆t

2

(
D+
t U

n+1
j

)2

,

and the summation by parts formula (10.20) together with the boundary
conditions to obtain

∆x∆t

2

N∑
j=1

D−t

((
Un+1
j

)2
)

=−∆x∆t
N∑
j=0

(
D+
xU

n+1
j

)2

− ∆x∆t2

2

N∑
j=1

(
D−t U

n+1
j

)2

.

144

10.5. An Implicit Finite Difference Scheme

Thus,

En+1 = En −∆x∆t
N∑
j=0

(
D+
xU

n+1
j

)2

− ∆x∆t2

2

N∑
j=1

(
D−t U

n+1
j

)2

.

Therefore, for all n = 0, . . . ,M it holds that

En+1 ≤ En.

Hence, irrespective of the size of the time step ∆t and the grid spacing ∆x,
the discrete energy of the approximate solution produced by the implicit
finite difference scheme (10.26) does not increase over time. Thus, the
implicit finite difference scheme (10.26) is termed unconditionally stable.

10.5.2 Discrete Maximum Principle

The unconditional stability of the implicit finite difference scheme (10.26)
can also be deduced using the discrete maximum principle.

First, observe that the implicit finite difference scheme (10.26) can be
rewritten in the form

(1 + 2λ)Un+1
j = Un

j + λUn+1
j−1 + λUn+1

j+1 . (10.28)

Next, let Ūn+1 = max0≤j≤N+1 U
n+1
j . Then, since λ > 0, Equation (10.28)

implies that for all j = 0, . . . , N + 1 it holds that

(1 + 2λ)Un+1
j ≤ Ūn + 2λŪn+1.

Now, using the fact that the right side of the above inequality is independent
of j, we obtain that for all n = 0, . . . ,M

max
0≤j≤N+1

Un+1
j ≤ Ūn + 2λŪn+1

=⇒ (1 + 2λ)Ūn+1 ≤ Ūn + 2λŪn+1

=⇒ Ūn+1 ≤ Ūn.

We can similarly prove a minimum principle for the approximate solution
produced by the implicit finite difference scheme (10.26). We therefore
conclude that

min
(
0,min

j
U0
j

)
≤ Un+1

j ≤ max
(
0,max

j
U0
j

)
, (10.29)

145

10.5. An Implicit Finite Difference Scheme

for all n = 0, . . . ,M .

Inequality (10.25) is once again a discrete version of the maximum principle.
We have thus shown that approximate solutions produced by the implicit
finite difference scheme (10.26) will satisfy (10.25) irrespective of the values
of ∆x and ∆t and the CFL condition (10.23). Therefore, we once again
conclude that the implicit finite difference scheme (10.26) is unconditionally
stable.

10.5.3 Numerical Results

We consider the boundary value problem (10.16) and use the implicit fi-
nite difference method (10.26) to approximate solutions to this problem for
different values of the time step ∆t and the parameter λ. We recall that
the explicit finite difference scheme (10.13) is only conditionally stable and
therefore produces unstable solutions if the parameter λ > 1

2
.

(a) ∆x = 1
50 , ∆t = 1

5000 =⇒ λ = 0.5. (b) ∆x = 1
50 , ∆t = 1

4975 =⇒ λ = 0.503.

Figure 10.8: Exact solution and approximate solution plots at time t = 0.1 for
the BVP (10.16) using both the explicit and implicit finite difference method for
two different values of ∆t and λ.

Figure 10.8 displays the exact and approximate solution at time t = 0.1 for
the parameter values λ = 1

2
and λ = 0.55. The figure indicates that while

the explicit finite difference scheme (10.13) is unstable for λ = 0.55, the
implicit finite difference scheme (10.26) produces a stable solution for both
values of λ.

Furthermore, Figure 10.9 supports our conclusion that the implicit numer-
ical scheme (10.26) produces stable solutions irrespective of the value of λ.

146

10.6. Crank-Nicolson Scheme

We note however that the accuracy of the approximate solutions decreases
for larger values of the parameter λ.

Figure 10.9: Approximate solution plots of the BVP (10.16) for different values
of the parameter λ.

Remark 10.5 (Convergence Results) It can be shown that, similar to
the explicit finite difference scheme (10.13), the implicit finite difference
scheme (10.26) has a first-order rate of convergence in time and a second-
order rate of convergence in space.

10.6 Crank-Nicolson Scheme

Both the explicit and implicit finite difference schemes discussed so far
are only first-order accurate in time. An example of a higher-order time
accurate scheme is the Crank-Nicolson method:

D+
t U

n
j =

1

2
D−x D+

xU
n
j +

1

2
D−x D+

xU
n+1
j , (10.30)

for all j = 1, . . . , N and for all n = 0, . . .M .

Equation (10.30) can be rewritten as

Un+1
j − Un

j

∆t
=
Un
j−1 − 2Un

j + Un
j+1

2∆x2
+
Un+1
j−1 − 2Un+1

j + Un+1
j+1

2∆x2
,

for all j = 1, . . . , N and for all n = 0, . . .M .

Note that the right side of Equation (10.30) is simply an average of the
spatial derivatives at the tn and tn+1 time levels. Hence, the Crank-Nicolson
scheme (10.30) is the formal average of the explicit finite difference scheme
(10.14) and the implicit finite difference scheme (10.26).

147

10.6. Crank-Nicolson Scheme

Also note that we can impose the boundary conditions of the heat equation
(10.12) by setting for all n = 1, . . . ,M + 1

Un
0 = Un

N+1 = 0,

and we can impose the initial conditions of the heat equation (10.12) by
setting for all j = 0, . . . , N + 1

U0
j = u0

j = u0(xj).

Note that using λ = ∆t
∆x2

, we can rewrite the scheme (10.30) as

−λ
2
Un+1
j−1 + (1 + λ)Un+1

j − λ

2
Un+1
j+1 =

λ

2
Un
j−1 + (1− λ)Un

j +
λ

2
Un
j+1,

for all j = 1, . . . , N and for all n = 0, . . .M .

Then, similar to the implicit finite difference scheme (10.26), it is possible to
rewrite the Crank Nicolson scheme (10.30) at any time level tn as a matrix
equation:

AUn+1 = F n, (10.31)

where Un+1 =
{
Un+1
j

}N
j=1

is the vector of unknowns, F n =
{
F n
j

}N
j=1

is the

right-hand side given by

F n
j =

λ

2
Un
j−1 + (1− λ)Un

j +
λ

2
Un
j+1,

and A = {Ai,j}Ni,j=1 is the tridiagonal N ×N matrix given by

A =


1 + λ −λ

2
0 . . . 0

−λ
2

1 + λ −λ
2

. . .
...

0
. 0

...
. . . −λ

2
1 + λ −λ

2

0 . . . 0 −λ
2

1 + λ

 .

10.6.1 Discrete Energy Stability

In order to explore the stability of approximate solutions produced by the
Crank-Nicolson scheme (10.30), we perform an energy stability analysis.

148

10.6. Crank-Nicolson Scheme

To this end, we multiply both sides of Equation (10.30) with ∆x∆t
(
vn+1
j +vnj

2

)
and sum over all j = 1, . . . , N , to obtain

∆x

2

N∑
j=1

(
Un+1
j + Un

j

)(
Un+1
j − Un

j

)
=

∆x∆t

4

N∑
j=1

Un+1
j D−x D+

xU
n+1
j︸ ︷︷ ︸

T̄1

+
∆x∆t

4

N∑
j=1

Un
j D−x D+

xU
n+1
j︸ ︷︷ ︸

T̄2

+
∆x∆t

4

N∑
j=1

Un+1
j D−x D+

xU
n
j︸ ︷︷ ︸

T̄3

+
∆x∆t

4

N∑
j=1

Un
j D−x D+

xU
n
j︸ ︷︷ ︸

T̄4

.

We can now modify the discrete summation by parts formula (10.20) and use
the boundary conditions in order to simplify each of the terms T̄1, T̄2, T̄3, T̄4

individually. We then obtain

T̄1 = −∆x∆t

4

N∑
j=0

(
D+
xU

n+1
j

)2

,

T̄2 = T̄3 = −∆x∆t

4

N∑
j=0

(
D+
xU

n
j

)(
D+
xU

n+1
j

)
,

T̄4 = −∆x∆t

4

N∑
j=0

(
D+
xU

n
j

)2

.

Since

∆x

2

N∑
j=1

(
Un+1
j + Un

j

)(
Un+1
j − Un

j

)
= En+1 − En,

149

10.6. Crank-Nicolson Scheme

it therefore follows that

En+1 − En =− ∆x∆t

4

N∑
j=1

(
D+
xU

n+1
j

)2

− ∆x∆t

2

N∑
j=1

(
D+
xU

n
j

)(
D+
xU

n+1
j

)
− ∆x∆t

4

N∑
j=1

(
D+
xU

n
j

)2

.

Hence, for all n = 0, . . . ,M it holds that

En+1 = En − ∆x∆t

4

N∑
j=1

(
D+
x v

n+1
j + D+

x v
n
j

)2

=⇒ En+1 ≤ En.

Therefore, irrespective of the size of the time step ∆t and the grid spacing
∆x, the discrete energy of the approximate solution produced by the Crank-
Nicolson scheme (10.30) does not increase over time. Thus, the Crank-
Nicolson scheme is also termed unconditionally stable.

Remark 10.6 (Discrete Maximum Principle) Interestingly, despite the
unconditional stability of the Crank-Nicolson scheme (10.30), it can never-
theless be shown that the approximate solutions produced by the scheme
will satisfy a discrete maximum principle only if λ = ∆t

∆x2
≤ 1. Indeed,

for large values of λ, approximate solutions may contain spurious oscilla-
tions. Therefore, in contrast to the implicit finite difference scheme (10.26),
the Crank-Nicolson scheme in general, will not satisfy a discrete maximum
principle if there is no constraint on λ.

10.6.2 Truncation Error

Let unj = u(xj, t
n), where u is the exact solution of the heat equation (10.12).

Then the truncation error of the Crank-Nicolson scheme (10.30) is defined
as

τnj =
un+1
j − unj

∆t
−
unj−1 − 2unj + unj+1

2∆x2
−
un+1
j−1 − 2un+1

j + un+1
j+1

2∆x2
,

or equivalently,

τnj = D+
t u

n
j −

(
1

2
D−x D+

x u
n
j +

1

2
D−x D+

x u
n+1
j

)
.

150

10.7. Convergence Studies

It can be shown using Taylor expansions that there exists some constant
C ∈ R such that for all n = 0, . . . ,M and for all j = 1, . . . , N , the truncation
error τnj satisfies the bound

|τnj | ≤ C
(

∆t2 + ∆x2
)
.

Furthermore, we can use the above bound on the truncation error along
with the results on energy stability to prove that the Crank-Nicolson scheme
(10.30) has a second-order rate of convergence in both time and space.

10.7 Convergence Studies

Convergence Study 1 We consider the boundary value problem (10.15)
given by

ut − uxx = 0, on (0, 1)× (0, T),

u(x, 0) = sin(2πx), on (0, 1),

u(0, t) = u(1, t) = 0, on (0, T),

Our goal is to use the different finite difference schemes (10.13), (10.26)
and (10.30) to approximate solutions to this problem for different values of
the time step ∆t and grid size ∆x and compare the experimental order of
convergence. For the purpose of this experiment, we choose a fixed λ = 1

2

so that ∆t = 1
2
∆x2. All errors were calculated using the max-norm and a

final time T = 0.1.

∆x ∆t Explicit EOC Implicit EOC Crank-Nicolson EOC
1
10

1
2·102

4.63× 10−3 1.90 1.05× 10−2 2.03 2.27× 10−3 1.87
1
20

1
2·202

1.25× 10−3 1.99 2.57× 10−3 2.03 6.19× 10−4 1.99
1
40

1
2·402

3.13× 10−4 2.00 6.31× 10−4 2.00 1.56× 10−4 2.00
1
80

1
2·802

7.83× 10−5 2.00 1.57× 10−4 2.00 3.91× 10−5 2.00
1

160
1

2·1602
1.96× 10−5 2.00 3.92× 10−5 2.00 9.79× 10−6 2.00

1
320

1
2·3202

4.89× 10−6 9.79× 10−6 2.45× 10−6

Table 10.1: Error Table of the two-dimensional Finite difference methods for the
BVP (10.15).

Table 10.1 displays our results and indicates that all scheme have an exper-
imental order of convergence EOC ≈ 2 with respect to ∆x. We recall that

151

10.7. Convergence Studies

each finite difference scheme (10.13), (10.26) and (10.30) is second-order
accurate in space. Since, we have chosen ∆t = 1

2
∆x2, the temporal error

is at most of the same order as the spatial error and our results therefore
agree with the theoretical convergence analysis.

Convergence Study 2 We once again consider the boundary value prob-
lem (10.15) and use the finite difference schemes (10.26) and (10.30) to
approximate solutions to this problem. For the purpose of this experiment,
we set ∆x = ∆t and vary the parameter λ = 1

∆x
. All errors were calculated

using the max-norm and a final time T = 0.1.

Table 10.2 displays our results and indicates that the the implicit finite
difference scheme (10.26) has an experimental order of convergence EOC
≈ 1, while the Crank-Nicolson scheme (10.30) has an EOC ≈ 2. We recall
that the scheme (10.26) is only first-order accurate in time while the Crank-
Nicolson scheme (10.30) is second-order accurate in time. Since, we have
chosen ∆t = ∆x, the spatial error is at most of the same order as the tem-
poral error and our results therefore agree with the theoretical convergence
analysis.

∆x ∆t Implicit EOC Crank-Nicolson EOC
1
20

1
20

9.50× 10−2 1.07 1.92× 10−2 1.70
1
40

1
40

4.51× 10−2 1.09 5.92× 10−3 1.99
1
80

1
80

2.12× 10−2 1.07 1.50× 10−3 2.00
1

160
1

160
1.01× 10−2 1.04 3.76× 10−4 2.00

1
320

1
320

4.88× 10−3 1.02 9.42× 10−5 2.00
1

640
1

640
2.40× 10−3 2.35× 10−5

Table 10.2: Error Table of the two-dimensional Finite difference methods for the
BVP (10.15).

152

11 Linear Transport Equations
(Hyperbolic PDEs)

In this chapter, we consider the simplest example of a hyperbolic partial
differential equation: the linear transport equation in one spatial dimension,
which is given by

ut + a(x, t)ux = 0 ∀ (x, t) ∈ R× R+. (11.1)

One situation where this equation arises is when modelling the motion of a
pollutant in a river. Let u denote the concentration of the pollutant in the
river. Assume that the river flows with a velocity field a(x, t) and we know
the velocity field at all points in the river. The pollutant will clearly be
transported with the velocity of the river at the current position and this
then leads to Equation (11.1).

The simplest case of the scalar transport equation actually arises when
the velocity field is constant, that is, a(x, t) ≡ a. The resulting transport
equation is

ut + aux = 0. (11.2)

The rather simple equation (11.2) has served as a crucible for designing
highly efficient schemes for much more complicated systems of equations.
We concentrate on it for the rest of this chapter.

11.1 Method of characteristics

The initial value problem (or Cauchy problem) for (11.1) consists of finding
a solution of (11.1) that also satisfies the initial condition

u(x, 0) = u0(x) ∀ x ∈ R. (11.3)

It is well known that the solution of the initial value problem can be con-
structed by using the method of characteristics. The idea underlying this

153

11.1. Method of characteristics

X0

X(t)

Figure 11.1: Characteristics curves x(t) for (11.1)

method is to reduce a PDE like (11.1) to an ODE by utilizing the structure
of the solutions. As an ansatz, assume that we are given some curve x(t),
along which the solution u is constant. This means that

0 =
d

dt
u(x(t), t) (as u is constant along x(t))

= ut(x(t), t) + ux(x(t), t)x′(t) (chain rule).

We also know that ut(x(t), t) + ux(x(t), t)a(x(t), t) = 0, since u is assumed
to be a solution of (11.1). Therefore, if x(t) satisfies the ODE

x′(t) = a(x(t), t)

x(0) = x0,
(11.4)

then x(t) is precisely such a curve. The solution x(t) of this equation is
called a characteristic curve. From ODE theory, we know that solutions of
(11.4) exist provided that a is Lipschitz continuous in both arguments. It
may or may not be possible to find an explicit solution formula for (11.4).

The importance of characteristic curves lies in the property that u is con-
stant along them:

u(x(t), t) = u(x(0), 0) = u0(x0).

The initial data u0(x) is already known, so if we can find characteristic
curves that go through all points (x, t) ∈ R × R+, then we have found the
solution u at all points in the plane. (See Figure 11.1) for an illustration.)

In the simple case of a constant velocity field a(x, t) ≡ a, the characteristic
equation (11.4) is explicitly solved as

x(t) = x0 + at.

154

11.1. Method of characteristics

Therefore, given some point (x, t), the unique characteristic that goes through
(x, t) (so that x(t) = x) has initial value x0 = x − at. Hence, the solution
of (11.2) is

u(x, t) = u0(x0) = u0(x− at) (11.5)

for any (x, t) ∈ R×R+. The solution formula (11.5) implies that the initial
data is transported with the velocity a.

In the more general case of (11.1), the characteristic equation (11.4) may not
be possible to solve explicitly. Hence, it is essential that we obtain some
information about the structure of solutions of (11.1) from the equation
itself. This is done by means of an energy estimate. In order to prove this
estimate however, we require the important Gronwall lemma:

Theorem 11.1 (Gronwall’s inequality) Let β(t) be continuous and u(t)
be differentiable on some interval [a, b], and assume that

u′(t) ≤ β(t)u(t) ∀ t ∈ (a, b).

Then

u(t) ≤ u(a) exp

(∫ t

a

β(t)

)
∀ t ∈ [a, b].

Solutions to the transport equation (11.1) then satisfy the following energy
estimate:

Lemma 11.2 Let u(x, t) be a smooth solution of (11.1) which decays to
zero at infinity, i.e, lim

|x|→∞
u(x, t) = 0 for all t ∈ R+ and let a be a continu-

ously differentiable function. Then u satisfies the energy bound∫
R
u2(x, t)dx ≤ e‖a‖C1 t

∫
R
u2

0(x)dx (11.6)

for all times t > 0.

155

11.2. Finite difference schemes for the transport equation

Proof The proof of the estimate (11.6) is based on multiplying (11.1) with
u on both sides:

uut + a (x, t)uux = 0 (multiplying (11.1) by U)(
u2

2

)
t

+ a (x, t)

(
u2

2

)
x

= 0 (chain rule)(
u2

2

)
t

+

(
a (x, t)

u2

2

)
x

= ax (x, t)
u2

2
(product rule)

d

dt

∫
R

(
u2

2

)
dx+

∫
R

(
a (x, t)

u2

2

)
x

dx =

∫
R
ax (x, t)

u2

2
dx (integrating over space)

d

dt

∫
R

(
u2

2

)
dx+

(
a (x, t)

u2

2

) ∣∣∣x=∞

x=−∞
=

∫
R
ax (x, t)

u2

2
dx

d

dt

∫
R

(
u2

2

)
dx =

∫
R
ax (x, t)

u2

2
dx (decay to zero at infinity)

≤ ‖a‖C1

∫
R

u2

2
dx (regularity of a),

where ‖a‖C1 = supx∈R ax(x, t). Finally, we can apply Gronwall’s inequality
(Theorem 11.1) on the interval [0, t] with β ≡ ‖a‖C1 to obtain∫

R
U2(x, t)dx ≤ e‖a‖C1 t

∫
R
U2

0 (x)dx. �

The quantity
∫
R
u(x,t)2

2
dx is commonly called the energy of the solution.

The above lemma shows that the energy of the solutions to the transport
equation (11.1) are bounded. The energy estimate is going to be used for
designing robust schemes for the transport equation. We remark that the
restriction that the solution u decays to zero at infinity may be relaxed by
considering a different energy functional.

11.2 Finite difference schemes for the transport equation

It may not be possible to obtain an explicit formula for the solution of
the characteristic equation (11.4). For example, the velocity field a(x, t)
might have a complicated nonlinear expression. Hence, we have to devise
numerical methods for approximating the solutions of (11.1). For simplicity,
we consider a(x, t) ≡ a > 0 and solve (11.2). It is rather straightforward to
extend the schemes to the case of a more general velocity field.

156

11.2. Finite difference schemes for the transport equation

Discretization of the domain

The first step in any numerical method is to discretize both the spatial and
temporal parts of the domain. Since R is unbounded, we have to truncate
the domain to some bounded domain [xl, xr]. This truncation implies that
suitable boundary conditions need to be imposed. We discuss the problem
of boundary conditions later on.

For the sake of simplicity, the domain [xl, xr] is discretized uniformly with a
mesh size ∆x into a sequence of N+1 points xj such that x0 = xl, xN = xr
and xj+1 − xj = ∆x for all j. A non-uniform discretization can readily be
considered.

For the temporal discretization, we choose some terminal time T and divide
[0, T] into M points tn = n∆t (n = 0, . . . ,M). The space-time mesh is
shown in Figure 11.2. Our aim is obtain an approximation of the form
Un
j ≈ u(xj, t

n). To get from the initial time step t0 to the terminal time
step tM , we first set the initial data U0

j = u0(x0) for all j. Then the solution
U1
j at the next time step is computed using some update formula, again for

all j. This process is reiterated until we arrive at the final time step tM = T
with our final solution UM

j .

A simple centered finite difference scheme

On the mesh, we need to approximate the transport equation (11.2). We
do so by replacing both the spatial and temporal derivatives by finite differ-
ences. Similar to the case of the Heat equation (10.2), the time derivative is
replaced with a forward difference and the spatial derivative with a central
difference. The resulting scheme is

Un+1
j − Un

j

∆t
+
a(Un

j+1 − Un
j−1)

2∆x
= 0 for j = 1, . . . , N − 1. (11.7)

_tn

tn+1

tn+ 2

X j X j + 1
Xj−1

U
n
j ∆

∆ t

X

Figure 11.2: A representation of the mesh in space-time

157

11.2. Finite difference schemes for the transport equation

Some special care must be taken when defining the boundary values. We
have a consistent discretization of (11.2) that is very simple to implement.
We test it on the following numerical example.

A numerical example

Consider the linear transport equation (11.2) in the domain [0, 1] with initial
data

U0(x) = sin(2πx). (11.8)

Since the data is periodic, it is natural to assume periodic boundary condi-
tions. We implement this numerically by letting

Un
0 = Un

N−1, Un
N = Un

1 .

The exact solution is calculated by (11.5) as u(x, t) = sin(2π(x− at)). We
set a = 1 and compute the solutions with the central scheme (11.7) with 100
mesh points, and plot the solution at time t = 3 in Figure 11.3. The figure
clearly shows that, despite being a consistent approximation, the scheme is
unstable, with very large oscillations.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

12

x

Figure 11.3: Approximate solution for (11.2) with the central scheme (11.7) at
time t = 3 with 100 mesh points.

A physical explanation

Why do the solutions computed with the central scheme (11.7) blow up?
After all, the central scheme seems a reasonable approximation of the trans-
port equation and worked perfectly well for the Heat equation (10.2). A
physical explanation can be deduced from the following argument: The
exact solution moves to the right (as a > 0) with a fixed speed. There-
fore, information goes from left to right. However, the central scheme (see

158

11.2. Finite difference schemes for the transport equation

Figure 11.4) takes information from both the left and the right, violating
the physics. Consequently, the solutions are unstable. This explanation
seems intuitive but has to be backed by solid mathematical arguments. We
proceed to do so below.

X j
X j+ 1

Figure 11.4: The central scheme (11.7). Green arrows indicate numerical propa-
gation and magenta arrows physical propagation.

A mathematical explanation

The observed instability of the central scheme can be explained mathe-
matically in terms of estimates. We recall that the exact solutions have a
bounded energy (see estimate (11.6)). It is reasonable to require that the
scheme is energy stable like the exact solution, that is, a discrete version of
energy remains bounded. For a given ∆x, we define the discrete version of
energy as

En =
1

2
∆x

N∑
j=1

(
Un
j

)2
. (11.9)

Note that the integral in the energy for the continuous problem has been
replaced with a Riemann sum.

Lemma 11.3 Let Un
j be the solutions computed with the central scheme

(11.7). Then the following estimate holds:

En+1 = En +
∆x

2

N∑
j=1

(
Un+1
j − Un

j

)2
. (11.10)

Consequently, the energy grows at every time step for any choice of ∆x,∆t.

Proof We mimic the steps of continuous energy estimate (Lemma 11.2)
and multiply both sides of the scheme (11.7) by Un

j to obtain

Un
j

(
Un+1
j − Un

j

)
+
a∆t

2∆x

(
Un
j U

n
j+1 − Un

j U
n
j−1

)
= 0. (11.11)

159

11.2. Finite difference schemes for the transport equation

We have the following elementary identity:

d2(d1 − d2) =
(d1)2

2
− (d2)2

2
− 1

2
(d1 − d2)2 (11.12)

for any two numbers d1, d2. Therefore, (11.11) can be rewritten as(
Un+1
j

)2

2
−

(Un
j)2

2
− 1

2

(
Un+1
j − Un

j

)2
+
a∆t

2∆x

(
Un
j U

n
j+1 − Un

j U
n
j−1

)
= 0.

Next, we can denote

Hj+1/2 = a
Un
j U

n
j+1

2

to reduce the above equation to(
Un+1
j

)2

2
=

(Un
j)2

2
+

1

2

(
Un+1
j − Un

j

)2 − ∆t

∆x
(Hj+1/2 −Hj−1/2). (11.13)

Summing (11.13) over all j, we obtain

N∑
j=1

(
Un+1
j

)2

2
=

N∑
j=1

(Un
j)2

2
+

N∑
j=1

1

2

(
Un+1
j −Un

j

)2−
N∑
j=1

∆t

∆x
(Hj+1/2−Hj−1/2).

Finally, note that the last sum on the right side of the above equation is a
telescoping sum and using zero (or periodic) conditions, it reduces to zero.
We can therefore multiply both sides by ∆x to obtain

En+1 = En +
∆x

2

N∑
j=1

(
Un+1
j − Un

j

)2
. �

Although we assumed zero or periodic boundary conditions in the proof
of this lemma, a variant of the lemma holds for more general boundary
conditions, as for the continuous setting in Lemma 11.2.

The above lemma provides a mathematical justification for our physical
intuition. The central scheme leads to a growth of energy at every time
step and is therefore unconditionally unstable. We recall that by contrast,
in the case of the heat equation (10.2), the central scheme was conditionally
stable. We need to find schemes that posses a discrete version of the energy
estimate. This use of rigorous mathematical tools like energy analysis to
justify physical reasoning will be an essential ingredient of these notes.

160

11.3. An upwind scheme

11.3 An upwind scheme

The central scheme (11.7) does not respect the direction of propagation
of information for the transport equation (11.2). Hence, we must include
the correct direction of information propagation and hope that it stabilizes
the scheme. This entails using one-sided differences instead of a central
difference to approximate the linear transport equation (11.2).

If a > 0 and the direction of information propagation is from left to right,
then we can use a backward difference in space to obtain the scheme

Un+1
j − Un

j

∆t
+
a(Un

j − Un
j−1)

∆x
= 0 for j = 1, . . . , N − 1, (11.14)

and if a < 0, we can use the forward difference to obtain:

Un+1
j − Un

j

∆t
+
a(Un

j+1 − Un
j)

∆x
= 0 for j = 1, . . . , N − 1. (11.15)

Using the notation

a+ = max{a, 0}, a− = min{a, 0}, |a| = a+ − a−,

(11.14) and (11.15) can be written together as

Un+1
j − Un

j

∆t
+
a+(Un

j − Un
j−1)

∆x
+
a−(Un

j+1 − Un
j)

∆x
= 0. (11.16)

The above scheme takes into account the direction of propagation of in-
formation – information is “carried with the wind”. Hence, this scheme is
termed as the upwind scheme.

Using the definition of the absolute value and some simple algebraic ma-
nipulations, the upwind scheme (11.16) can be recast as

Un+1
j − Un

j

∆t
+
a(Un

j+1 − Un
j−1)

2∆x
=
|a|

2∆x
(Un

j+1 − 2Un
j + Un

j−1) (11.17)

(compare to (11.7)). Note that in the above form, the spatial derivatives
are the central term and a diffusion term. The right hand side of (11.17)

approximates ∆x|a|
2
uxx. Hence, the upwind scheme (11.17) adds numeri-

cal viscosity or diffusion to the unstable central scheme (11.7). Numerical
viscosity plays a crucial role in the design of numerical methods for ap-
proximating solutions to more complicated hyperbolic partial differential
equations.

161

11.3. An upwind scheme

X j
X j+ 1

Figure 11.5: The upwind scheme (11.16). Green arrows indicate numerical prop-
agation and magenta arrows physical propagation.

Since the upwind scheme incorporates the correct direction of propagation
of information (see Figure 11.5), we expect it to be more stable than the
central scheme. This is endorsed by the numerical experiment with initial
data (11.8). We take a = 1 and compute approximate solutions for the
linear transport equation (11.2) on a uniform mesh with 100 mesh points
up to t = 1. We use two different timesteps: ∆t = 1.3∆x and ∆t = 0.9∆x.
As seen in Figure 11.6, the results with ∆t = 1.3∆x are still oscillatory and
the scheme continues to be unstable. In spite of the upwinding, stability
stills seems to be elusive. However, results with ∆t = 0.9∆x are stable.
The approximation appears to be good in this case. Much better results
are obtained by refining the mesh, while keeping the ratio ∆t/∆x fixed, as
is presented in Figure 11.7.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

Upwind scheme

Exact solution

(a) ∆t = 1.3∆x

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(b) ∆t = 0.9∆x
Figure 11.6: Solution with initial data (11.8) at t = 1. The ratio ∆t/∆x is
important for stability.

162

11.4. Stability for the upwind scheme

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(a) 50 mesh points

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(b) 200 mesh points
Figure 11.7: Solution with initial data (11.8) at t = 10. Refining the mesh gives
a more accurate solution.

11.4 Stability for the upwind scheme

The numerical results indicate that stability for the upwind scheme is subtle.
It is not unconditionally unstable as the central scheme (11.7); instead,
stability depends on the parameters ∆x,∆t. Numerical results indicate
the crucial role played by the ratio ∆t

∆x
. It seems that one must not only

take into account the correct direction of propagation, but also the correct
magnitude.

The quantification of stability will involve energy analysis as in the last
section. We have the following stability result:

Lemma 11.4 Let the mesh parameters satisfy the condition

|a|∆t
∆x
≤ 1. (11.18)

Then solutions computed with the upwind scheme (11.17) satisfy the energy
estimate

En+1 ≤ En, (11.19)

where the energy is defined as in (11.9). The upwind scheme is thus condi-
tionally stable.

Proof For the sake of simplicity, we assume that a > 0. Hence the upwind
scheme (11.17) reduces to

Un+1
j − Un

j

∆t
+
a(Un

j+1 − Un
j−1)

2∆x
=

a

2∆x
(Un

j+1 − 2Un
j + Un

j−1). (11.20)

163

11.4. Stability for the upwind scheme

As in the proof of the estimate (11.10) we multiply both sides of the scheme
(11.20) by Un

j to obtain

Un
j (Un+1

j − Un
j) = − a∆t

2∆x
(Un

j U
n
j+1 − Un

j U
n
j−1)

+
a∆t

2∆x
(Un

j (Un
j+1 − Un

j)) +
a∆t

2∆x
(Un

j (Un
j−1 − Un

j)).

(11.21)
Now we use elementary identity (11.12) twice and rewrite (11.21) as

(Un+1
j)2

2
=

(Un
j)2

2
+

(Un+1
j − Un

j)2

2
− a∆t

2∆x
(Un

j U
n
j+1 − Un

j U
n
j−1)

+
a∆t

4∆x

(
(Un

j+1)2 − (Un
j)2
)
− a∆t

4∆x

(
(Un

j)2 − (Un
j−1)2

)
− a∆t

4∆x
(Un

j+1 − Un
j)2 − a∆t

4∆x
(Un

j − Un
j−1)2.

(11.22)

Denoting

Kj+1/2 =
a

2
(Un

j U
n
j+1)− a

4

(
(Un

j+1)2 − (Un
j)2
)
,

we may rewrite (11.22) as

(Un+1
j)2

2
=

(Un
j)2

2
+

(Un+1
j − Un

j)2

2
− a∆t

∆x
(Kj+1/2 −Kj−1/2)

− a∆t

4∆x
(Un

j+1 − Un
j)2 − a∆t

4∆x
(Un

j − Un
j−1)2.

(11.23)

We may now sum (11.23) over all j to obtain

N∑
j=1

(Un+1
j)2

2
=

N∑
j=1

(Un
j)2

2
+

N∑
j=1

(Un+1
j − Un

j)2

2
−

N∑
j=1

a∆t

∆x
(Kj+1/2 −Kj−1/2)

−
N∑
j=1

a∆t

4∆x
(Un

j+1 − Un
j)2 −

N∑
j=1

a∆t

4∆x
(Un

j − Un
j−1)2.

Finally, note that the sum involving Kj−1/2 on the right side of the above
equation is a telescoping sum and using zero (or periodic) boundary condi-
tions, it reduces to zero. Furthermore, using a change of indices and zero
(or periodic) boundary conditions we obtain that

N∑
j=1

a∆t

4∆x
(Un

j+1 − Un
j)2 =

N∑
j=1

a∆t

4∆x
(Un

j − Un
j−1)2

164

11.4. Stability for the upwind scheme

We can therefore multiply both sides of the equation with ∆x and obtain

En+1 ≤ En +
∆x

2

∑
j

(Un+1
j − Un

j)2 − a∆t

2

∑
j

(Un
j − Un

j−1)2. (11.24)

Using the definition of the upwind scheme (11.14) in (11.24) yields

En+1 ≤ En +

(
a2∆t2

2∆x
− a∆t

2

)∑
j

(Un
j − Un

j−1)2. (11.25)

Since the term in the sum in (11.25) is positive, we obtain the energy bound
(11.19), provided

a2∆t2

∆x
≤ a∆t,

which is precisely the condition (11.18). �

The stability condition (11.18) is termed the CFL condition after Courant,
Friedrichs and Lewy who first proposed it. Note that the CFL condition
(11.18) for the linear transport equation is much less restrictive than the
CFL condition (10.23) for the heat equation. Indeed, (11.18) implies that
∆x ≈ ∆t, which means that even in the case of a very fine mesh, the size
of the time step ∆t is of the order of the size of grid spacing ∆x. We
remark that the conditional stability of the upwind scheme is confirmed in
numerical experiments.

Numerical experiment: Discontinuous data

Consider the transport equation (11.2) with a = 1 in the domain [0, 1] and
initial data

u0(x) =

{
2 if x < 0.5

1 if x > 0.5.
(11.26)

The initial data and consequently the exact solution (11.5) are discontinu-
ous. We compute with the upwind scheme using 50 and 200 mesh points
and display the results in Figure 11.8. The results show that the upwind
scheme approximates the solution quite well, at least at a fine resolution.
However the errors on a coarse mesh are somewhat large. One can construct
more accurate methods but this is far beyond the scope of these notes.

165

11.4. Stability for the upwind scheme

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

x

Upwind scheme

Exact solution

(a) 50 mesh points

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

x

Upwind scheme

Exact solution

(b) 200 mesh points
Figure 11.8: The upwind scheme (11.14) for advection (11.2) with discontinuous
initial data (11.26). Both results are at time t = 0.25.

166

	Introduction
	What is a Differential Equation?
	Ordinary Differential Equations (ODEs)
	Initial Value Problems (IVPs) for ODEs
	Single Body Dynamics
	N-Body Dynamics
	A Simple Pendulum
	A Population (Concentration) Model from Cell Biology
	Models of Chemical Kinetics

	Generic Form of IVPs for ODEs
	Types of ODEs
	Explicit Solutions of ODEs
	Well-Posedness of Initial Value Problems for ODEs

	Numerical Methods for Ordinary Differential Equations
	Time Discretisation
	Forward Euler Method
	Backward Euler Method
	Trapezoidal Method
	Mid-point Rule
	Numerical Experiments
	Truncation Error
	One-Step Error
	Global Error
	Taylor Expansion Methods

	Higher-Order Methods for ODEs
	The Runge-Kutta-2 (RK-2) Method
	Order of Accuracy of the RK-2 Method

	The Classical Runge-Kutta-4 (RK-4) Method
	Order of Accuracy of the RK-4 Method

	Numerical Experiments
	General Form of the Runge-Kutta Methods
	Consistency Conditions for Runge-Kutta methods
	Examples of Runge-Kutta methods
	Order of Accuracy of General RK Methods

	Multi-Step Methods for Solving ODEs
	Adams Methods
	Adams-Bashforth Methods
	Adams-Moulton Methods
	Truncation Error
	Starting Values
	Concluding Remarks

	Stability of Numerical Methods for ODEs
	Convergence of Forward Euler for Linear ODEs
	Convergence of Forward Euler for Non-Linear ODEs
	Convergence of Consistent One-Step Methods
	Why Convergence is Not Enough
	Absolute Stability
	Absolute Stability of Backward Euler Method
	Absolute Stability of Trapezoidal Rule

	Absolute Stability of Systems of ODEs
	Stiff Problems
	BDF Methods

	The Poisson Equation
	Derivation of Poisson's Equation
	A Variational Principle

	The Poisson Equation in One-Space Dimension
	Limitations of the Green's Function Representation

	Finite Difference Methods
	Discretising the domain
	Discretising the Derivatives
	The finite Difference Scheme
	Solving the Matrix Equation

	Numerical Results
	Finite Difference Schemes for the 2-D Poisson Equation
	Numerical Results in 2-D

	Finite Element Methods for the 1-D Poisson Equation
	Variational Principles
	A Variational Formulation
	The Finite Element Formulation
	Concrete Realisation of FEM
	Computing the Stiffness Matrix and the Load Vector

	Convergence Analysis
	Numerical Experiments

	Finite Element Methods for the 2-D Poisson Equation
	The two-dimensional Poisson Equation
	Variational Formulation

	The Finite Element Formulation
	Triangulations
	Concrete Realisation of FEM
	Numerical Experiments in 2-D

	Implementation of the Finite Element Method
	Treatment of Inhomogeneous Boundary Conditions
	Finite Element Formulation

	Parabolic Partial Differential Equations
	Exact Solutions to the Heat Equation
	Evaluation of the Exact Solution

	Energy Estimate
	Consequence of the Energy Estimate

	Maximum Principles
	Finite Difference Schemes for the Heat Equation
	Numerical Results
	Discrete Energy Stability
	Discrete Maximum Principle
	Truncation Error

	An Implicit Finite Difference Scheme
	Discrete Energy Stability
	Discrete Maximum Principle
	Numerical Results

	Crank-Nicolson Scheme
	Discrete Energy Stability
	Truncation Error

	Convergence Studies

	Linear Transport Equations (Hyperbolic PDEs)
	Method of characteristics
	Finite difference schemes for the transport equation
	An upwind scheme
	Stability for the upwind scheme

