Mathematical Finance

Exercise sheet 2

Exercise 2.1 Let W^1, W^2 be two independent Brownian motions.

- (a) For two C^2 functions $f, g : \mathbb{R}^2 \to \mathbb{R}$, let $X_t = f(W_t^1, W_t^2)$ and $Y_t = g(W_t^1, W_t^2)$. Compute the quadratic covariation of X and Y.
- (b) Let $Z_t = \int_0^t (\cos s dW_s^1 + \sin s dW_s^2)$. Prove that Z is a Brownian motion.

Exercise 2.2 Let $N^1, ..., N^m$ and $W^1, ..., W^m$ all be independent, with each N^k a Poisson process of rate 1 and each W^k a Brownian motion, all starting at 0. Let $X^k = N^k + W^k$ for each k.

(a) Recall the formula for the stochastic exponential of a process given in the lecture notes. Find the stochastic exponential Z of $X = \sum_{k=1}^{m} X^k$, and check directly that it satisfies the stochastic differential equation (SDE)

$$dZ = Z_- dX, \quad Z_0 = 1.$$

By this we mean that the integrated form of this equation holds:

$$Z_t - 1 = (Z_- \bullet X)_t.$$

(b) Use Itô's formula to find a decomposition for the process

$$Y_t = |\mathbf{X}_t|^{2\alpha},$$

where $\mathbf{X}_t = (X_t^1, ..., X_t^m)$ and $|\mathbf{X}_t| = \left(\sum_{k=1}^m (X_t^k)^2\right)^{\frac{1}{2}}$, and we also assume $\alpha \in \mathbb{N}$.

(c) (optional) Let $\mathbf{v} \in \mathbb{R}^m$ and suppose that $P(\forall t \ge 0 \ \mathbf{X}_t, \mathbf{X}_{t-} \neq \mathbf{v}) = 1$.

Find a similar decomposition for the process

$$\tilde{Y}_t = |\mathbf{X}_t - \mathbf{v}|^{2\alpha},$$

where now $\alpha \in \mathbb{R}$.

Exercise 2.3

(a) Let x be a càdlàg function on [0, 1], and let π^n be a refining sequence of dyadic rational partitions of [0, 1] with $\lim_{n\to\infty} \operatorname{mesh}(\pi^n) = 0$. Show that, if the sum

$$\sum_{\substack{t_k^n, t_{k+1}^n \in \pi^n}} y(t_k^n)(x(t_{k+1}^n) - x(t_k^n))$$

converges to a finite limit for every càglàd function on [0, 1], then x is of finite variation.

(b) Let X be a good integrator, and let Π^n be a sequence of partitions tending to identity. Show that

$$\sum_{\tau_k^n, \tau_{k+1}^n \in \Pi^n} Y_{\tau_k^n}(X_{\tau_{k+1}^n} - X_{\tau_k^n}) \stackrel{\mathrm{ucp}}{\to} (Y \bullet X)$$

for every adapted càglàd process Y.

Updated: October 4, 2019