Mathematical Finance

Exercise sheet 7

Exercise 7.1 Consider the Bachelier model, taking [0, 1] as the time interval and where the price of the risky asset is given by

$$S_t = \int_0^t \sigma dB_s.$$

Consider $\mathcal{X}_1 := \{ \vartheta \bullet S, \vartheta \in \Theta_{adm}^1 \}$, the set of wealth processes produced by admissible strategies.

(a) Show that \mathcal{X}_1 has the concatenation property: for any bounded, predictable $H, G \ge 0$ with HG = 0 and for any $X, Y \in \mathcal{X}_1$, if

$$Z = (H \bullet X) + (G \bullet Y) \ge -1$$

then $Z \in \mathcal{X}_1$.

(b) Show that \mathcal{X}_1 is closed in the Emery topology.

Exercise 7.2 Suppose we define a model with time interval [0, 1], one riskless asset of constant price 1 and one risky asset which is a compound Poisson process with standard normal jumps.

Specifically, for some Poisson process $(N_t)_{t \in [0,1]}$ of rate 1 and $(Z_k)_{k \in \mathbb{N}}$ a sequence of i.i.d. standard normal variables (also independent from N), we have that

$$S_t = \sum_{k=1}^{N_t} Z_k.$$

We take the natural filtration of S.

Show that the only admissible strategy is 0.

Exercise 7.3 Consider a general model, with [0,1] as the time interval, a riskless asset of constant price 1, and some *d*-dimensional semimartingale *S* representing the prices of the risky assets.

Define

$$G = \{ (\vartheta \bullet S)_T, \vartheta \in \Theta_{adm} \} \subseteq L^0$$

and

$$C = (G - L_{>0}^0) \cap L^\infty \subseteq L^\infty.$$

(a) Show that the following notions of no arbitrage are equivalent:

$$G \cap L^0_{>0} = \{0\}$$

 $C \cap L^{\infty}_{>0} = \{0\}.$

and

(b) Prove that C is weak-*-closed if and only for any bounded sequence (f_n) in C converging almost surely to f_0 , it holds that $f_0 \in C$.

Exercise 7.4 Suppose that $B = \{\xi_{\alpha}, \alpha \in A\}$ is some family of non-negative random variables, such that for some $\epsilon > 0$ and all $\alpha \in A$,

$$P(\xi_{\alpha} \ge \epsilon) \ge \epsilon.$$

Updated: November 8, 2019

1/2

Show that

$$0 \notin \overline{\operatorname{co}(B)}^{L^0},$$

where $co(\cdot)$ is the convex hull.

Exercise 7.5 (Python) Assume Black-Scholes dynamics for S, say $(r, \mu, \sigma) = (0, 0, 1)$, and find the hedging strategy H for the log-contract g whose discounted payoff is given by

$$g(S_T) = \log \frac{S_T}{S_0} + \frac{1}{2}\sigma^2 T.$$

Compare numerically the value of $g(S_T)$ to $(H \bullet S)_T$ at T = 1.