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Exercise 1.1 Let (Mn)n∈N be a martingale such that M0 = 0 and

|Mn −Mn−1| ≤ an P -a.s.

for each n and a sequence (an) of non-negative constants, with
∑∞
i=1 a

2
i = A2 <∞.

(a) Prove that M is bounded in L2. Deduce that Mn →M∞ almost surely and in L2, for some
M∞ in L2.

(b) Show that

P

(
sup
k≥0

Mk ≥ c
)
≤ exp

(
− c2

2A2

)
,

for any c > 0.
Hint: Try applying Doob’s maximal inequality to (eλMn), for some λ > 0. You may use the
inequality cosh(x) ≤ ex2/2 (for x ∈ R).

Solution 1.1

(a) Recall the simple fact that, since M is a martingale,

E[(Mn+1 −Mn)2 | Fn] = E[M2
n+1 −M2

n | Fn].

From this and M0 = 0 it follows that

E[M2
n] =

n∑
i=1

E[(Mn −Mn−1)2]

≤
n∑
i=1

a2
i ≤ A2 <∞

using the assumptions. Therefore M is bounded in L2. It is known that boundedness in L2

implies in particular uniform integrability, so by the martingale convergence theorem there is
a limit Mn → M∞ almost surely and in L1. Boundedness of M in L2 implies furthermore
that M∞ is in L2 and that the convergence also happens in L2.

(b) Let λ > 0 be fixed and let

Zn = eλMn .

Then we have the following (note that, since Z is non-negative, we don’t need to assume
integrability):

E[Zn | Fn−1] = Zn−1E[eλ(Mn−Mn−1) | Fn−1].

To estimate this term, note that |Mn −Mn−1| ≤ an by assumption. On [−an, an] we have
(by convexity) the inequality
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an − x
2an

e−λan + an + x

2an
eλan ≥ eλx

(this simply follows from convexity). Thus,

E[Zn | Fn−1] ≤ Zn−1

(
an − E[Mn −Mn−1 | Fn−1]

2an
e−λan + an + E[Mn −Mn−1 | Fn−1]

2an
eλan

)
= Zn−1

(
1
2e
−λan + 1

2e
λan

)
= Zn−1 cosh(λan)

≤ Zn−1e
λ2a2

n/2,

using that M is a martingale and the given inequality.
Iterating, we obtain

E[Zn] ≤ exp
(
λ2

n∑
i=1

a2
i /2
)
≤ exp(λ2A2/2).

In particular, this proves that Zn is integrable, and from Jensen’s inequality it follows easily
that Z is a submartingale (since M is a martingale).
Next, we apply Doob’s maximal inequality to Z to obtain the following (letM∗n = max0≤k≤nMk,
etc):

P (M∗n ≥ c) = P (Z∗n ≥ eλc)
≤ e−λcE[Zn]

≤ e−λc+λ
2A2/2.

At this point we haven’t specified what value λ > 0 will take, and so we are free to choose a
convenient one. We choose λ so as to minimise the exponent, meaning that λ = c

A2 and so

P (M∗n ≥ c) ≤ exp
(
− c2

2A2

)
,

which is precisely the bound we want. To replace M∗n with M∗∞ we simply use the monotone
convergence theorem.

Exercise 1.2 Let S denote the family of simple predictable processes H, i.e.

H = H01{0} +
n∑
i=1

Hi1(τi,τi+1]

for stopping times 0 = τ0 < τ1 < ... < τi+1 <∞ and bounded Fτi
-measurableHi for i = 0, 1, ..., n+1.

Let D denote the family of adapted càdlàg processes and L denote the family of adapted càglàd
processes on [0,∞). We endow D and L with the topology of convergence uniformly on compacts
in probability, generated by the metric

d(X,Y ) :=
∞∑
k=1

1
2kE[|(X − Y )|∗k ∧ 1].

Moreover, let the space of all measurable random variables L0 be endowed with the topology
generated by convergence in probability. Show that:
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(a) The vector spaces L and D are complete.

(b) For some càdlàg process X, the following are equivalent:

1. The map JX : S→ D with JX(H) := H0X0 +
∑n
i=1 Hi(Xτi+1∧· −Xτi∧·), for H ∈ S, is

continuous with respect to the u.c.p. metric on S and D, in other words, X is a good
integrator.

2. For every t ∈ [0,∞), the mapping IXt : S→ L0 with IXt(H) := JX(H)t, for H ∈ S, is
continuous with respect to the uniform norm metric on S.

Solution 1.2

(a) Let (Xn)n∈N be a Cauchy sequence (with respect to ucp metric) in L or D. In other words,
d(Xm, Xn)→ 0 as m,n→ 0. We may extract a subsequence Y k := Xnk such that

d(Y m, Y n) =
∞∑
k=1

1
2kE [|(Y m − Y n)|∗k ∧ 1] ≤ 2−n

for all m ≥ n.
Then (since the summands are non-negative), we have

E

[ ∞∑
n=1

∞∑
k=1
|(Y n+1 − Y n)|∗k ∧ 1

]
=
∞∑
n=1

∞∑
k=1

E
[
|(Y n+1 − Y n)|∗k ∧ 1

]
≤ 1.

We conclude from this that the sum inside the expectation on the left is finite almost surely.
This implies that, for ω ∈ A where A is a subset of full measure, we have that (Y n(ω))n∈N is a
Cauchy sequence in L∞loc(R+). Since this space is complete, there is a limit Y n(ω)→ X(ω) in
L∞loc(R+) for ω ∈ A. This is our candidate limit for X (defined arbitrarily outside of A). The
almost sure convergence of (Y n) implies the (weaker) convergence of (Y n) in ucp topology.
Since (Xn) is a Cauchy sequence with respect to the ucp metric, it follows that the whole
sequence (Xn) converges to X in ucp topology.
The limit is clearly measurable, and moreover

Xt = lim
n→∞

Y nt

for every t ∈ R+, so that X is adapted. The almost sure uniform convergence on compacts of
(Y n) to X gives that X ∈ L or D if Xn (and hence Y n) are in the corresponding space.

(b) Since JX and IXt , t ∈ [0,∞) are linear mappings between topological vector spaces, it suffices
to establish the continuity at the origin of S. Let X be a good integrator and Hn → 0
uniformly. This implies the weaker convergence Hn → 0 in ucp topology. Since X is a
good integrator, JX(Hn) → 0 in ucp topology. In particular, for any t ∈ [0,∞) we have
IXt(Hn)→ 0 in probability, as claimed.
For the converse, let Hn → 0 in ucp topology, and take c > 0. Fix a t ≥ 0 and ε > 0. By
assumption, we can find a δ > 0 such that if ||H||∞ ≤ δ, then P (|H •X|t > c) < ε.
Now, for each n ∈ N define the stopping times

τn = inf{s ≥ 0 : Hn
s > δ},

σn = inf{s ≥ 0 : |(Hn
1[0,τn] •X)|s > c}.
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Then, the following inequalities hold:

P (|Hn •X|∗t > c) ≤ P (|Hn
1[0,τn] •X|∗t > c) + P (τn ≤ t)

≤ P (|Hn
1[0,τn∧σn] •X|t > c) + P (τn ≤ t)

≤ ε+ P (τn ≤ t)
≤ 2ε

for large enough n. The first line follows, since Hn = Hn
1[0,τn] up to time t if {τn > t} holds.

The second line is justified by the fact that {|Hn
1[0,τn]•X|∗t > c} and {|Hn

1[0,τn∧σn]•X|t > c}
are both the same event as {σn ≤ t}. For the third line, note that ||Hn

1[0,τn]||∞ ≤ δ by
definition of τn and left-continuity of Hn, and therefore we can use the assumption on It to
bound this probability. For the last line, note that {τn ≤ t} = {sups∈[0,t] |Hn

s | > c} has low
probability for large n, thanks to ucp convergence.
Putting everything together, we see that Hn •X → 0 in ucp topology, which proves that X
is a good integrator.

Exercise 1.3 Prove that the set of good integrators is a vector space and show that it is generically
not closed with respect to the ucp topology. Construct in particular examples of processes which
are not good integrators but can be approximated by good integrators.

Solution 1.3 To prove that the set of good integrators is a vector space, we simply use the
linearity of stochastic integrals. Let λ ∈ R, take X,Y good integrators and Hk a sequence of simple
integrands with Hk → 0 in ucp topology. By linearity of stochastic integration (which is trivial to
check for simple integrands),

Hk • (X + λY ) = Hk •X + λHk • Y.

Since Hk → 0 in ucp topology, each of these terms converges to 0 in ucp topology (as X,Y are
good integrators). Since D with ucp topology is a topological vector space, Hk • (X + λY ) also
converges to 0 in ucp topology.

To prove that the set of good integrators is not closed with respect to the ucp topology, we can
even construct a simple deterministic example. Let 0 = t0 < t1 < t2 < ... < 1 be an increasing
sequence converging to 1. Let (an)n≥0 be a non-negative sequence converging to 0 with

∑
an =∞

(e.g. an = 1
n ). Now define the following process on [0, 1] which alternates between 0 and (an):

Xt =
∞∑
k=0

ak1t∈(t2k,t2k+1].

We define furthermore
Xk
t = Xt1t∈[t0,t2k].

It is clear that Xk → X uniformly on [0, 1]: indeed,

sup
t∈[0,1]

|Xk
t −Xt| = sup

j≥k+1
aj → 0

since aj → 0.
Moreover, each Xk is a good integrator: since Xk only has finitely many jumps, it is of finite

variation and thus a good integrator (from the lecture notes).
Finally, X is not a good integrator. To see this, take the sequence of midpoints sn = tn−1+tn

2 ,
so that t0 < s1 < t1 < s2 < ... < 1. Consider

Ht =
∞∑
k=1

1t∈[s2k−1,s2k)
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(which is not a simple integrand, since it has infinitely many jumps), and given a non-negative
sequence λn → 0 to be chosen later, the simple integrands

Hn
t = λnHt1t∈[0,t2n].

Since ||H||∞ = 1, it is clear that Hn → 0 uniformly. Moreover,

(Hn •X)1 = λn

n∑
k=1

(Xs2k
−Xs2k−1)

= λn

n∑
k=1

(−ak−1)

= −λn
n−1∑
k=0

ak.

By choosing an appropriate sequence λn, say λn =
(∑n−1

k=0 ak

)− 1
2 , this will diverge, therefore

proving that X is not a good integrator.

Exercise 1.4 Let µ be a probability measure on (0,+∞). Consider (on some probability space)
independent N,Y1, Y2, Y3, ... where each Yi has distribution µ and N = (Nt)t∈[0,1] is a Poisson
process on [0, 1] of rate λ > 0. Consider the compound Poisson process X on [0, 1] given by

Xt =
Nt∑
i=1

Yi.

(a) Find a necessary and sufficient condition for X to be a submartingale with respect to its
natural filtration.

(b) Show that under that condition, X is a submartingale of class (D). Find a decomposition

Xt = Mt +At ∀t ∈ [0, 1],

where M is a martingale and A is an increasing predictable process, both with càdlàg
trajectories.

(c) Show through direct calculations that X is a good integrator.

Solution 1.4

(a) Since the Yi are non-negative, the following computations hold for t ∈ [0, 1]:
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E[Xt] = E

[
Nt∑
i=1

Yi

]

= E

[
E

[
Nt∑
i=1

Yi | Nt

]]

= E

[
Nt∑
i=1

E [Yi | Nt]
]

= E

[
Nt

∫
(0,∞)

xdµ(x)
]

= λt

∫
(0,∞)

xdµ(x),

using independence and the distribution of the Yi.
Therefore, if X is going to be a submartingale then

∫
(0,∞) xdµ(x) =: µ0 <∞ is required. This

is in fact sufficient: the calculations above show that X is integrable. It is obviously adapted
to its natural filtration, and since it is (almost surely) increasing it must be a submartingale.

(b) Note that since X is increasing, for any stopping time τ (taking values on [0, 1]), Xτ ≤ X1.
SinceX1 is integrable (andXτ is non-negative), this means that {Xτ : τ is a stopping time on [0, 1]}
is uniformly integrable. Therefore (Xt)t∈[0,1] is of class (D).
We find the required decomposition:

Xt = (Xt − λµ0t) + λµ0t.

Clearly this is a valid decomposition, and At = λµ0t is increasing, predictable (even deter-
ministic) and càdlàg. Mt = Xt − λµ0t is clearly càdlàg since X is, and we want to show that
it is a martingale.
Since X is adapted and integrable, so is M . To show that it is a martingale, note that

E[Mt | Fs] = Ms − λ(t− s) + E

[
Nt∑

i=Ns+1
Yi | Fs

]

= Ms − λµ0(t− s) + E

[
E

[
Nt∑

i=Ns+1
Yi | σ(Nt,Fs)

]
| Fs

]

= Ms − λµ0(t− s) + E

[
Nt∑

i=Ns+1
E [Yi | σ(Nt,Fs)] | Fs

]

= Ms − λµ0(t− s) + E

[
Nt∑

i=Ns+1
µ0 | Fs

]
= Ms − λµ0(t− s) + E [µ0(Nt −Ns) | Fs]
= Ms,

as we wanted (using again independence, the distribution of the Yi as well as independence of
increments of the Poisson process).
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(c) Given a simple integrand H = H01{0} +
∑n
i=1 Hi1(τi,τi+1], we have that

|(H •X)t| =

∣∣∣∣∣
n∑
i=1

Hi(Xτi+1∧t −Xτi∧t)

∣∣∣∣∣
≤

n∑
i=1
|Hi||Xτi+1∧t −Xτi∧t|

≤
n∑
i=1
|Hi|(Xτi+1 −Xτi

)

≤ X1 sup
t∈[0,1]

|Ht|

Now, if we take simple integrands Hk converging to 0 in ucp topology, then we have that for
ε > 0,

P ( sup
t∈[0,1]

|(Hk •X)t| > ε) ≤ P ( sup
t∈[0,1]

|Hk
t |X1 > ε)

≤ P

(
sup
t∈[0,1]

|Hk
t | >

ε

M

)
+ P (X1 > εM)

for any M > 0. By choosing M large enough we can make the second term small, and then
by choosing k large enough we can make the first term small as well (using ucp convergence
of Hk to 0). This shows convergence of Hk •X to 0 in the ucp topology.
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