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Exercise 11.1 Let U be a utility function satisfying the Inada conditions, i.e. U € C*(Ry;R) is
strictly increasing, strictly concave and

U’(0) :

lim U'(x) = +o0
z\0

U'(+o00) := lim U'(x)=0.

Tr——+00

Let J be the Legendre transform of —U(—-),

J(y) = sup(U(z) — zy),
x>0
and denote by I := (U’)~! the inverse of the derivative of U.
Show the following properties:

1. J is strictly decreasing and strictly convex.
2. J'(0) = —o0, J'(+00) =0, J(0) = U(+00) and J(+00) = U(0).

3. For any =z > 0,
U(z) = inf (J(y) + zy).
y>0

4. For any y > 0,
J(y) =U(y)) —yI(y).

5. J =T

Solution 11.1
First we show that the supremum defining J is a maximum, i.e. for any y > 0, we have

Ty) = sup(U(z) —zy) = Ulzy) = zyy
for some z, > 0.
Note that, letting g, (z) = U(z) — zy, we have that g, is differentiable and

gy(x) =U'(x) —y.

Since U is C! (i.e. U’ is continuous), strictly convex (i.e. U’ is strictly decreasing), with U’(0) = +o0
and U’(400) = 0 by the Inada conditions, we obtain exactly one solution to U’(x,) = y. Moreover,
g?'J is negative for x > x, and positive for x < x,. Thus the maximum is obtained exactly at
z, = (U")~(y), which is a continuous, decreasing function of y (since U’ is). We keep using the
notation x,.

On the other hand, we can see that for y < 0, the maximum is obtained as x — 400 (since g,
is increasing in x), which gives that J(0) = U(400) (possibly = +00) and J(y) = +o0 for y < 0.

We show first that J is differentiable on (0,400). Note that the equation U’(z,) = y implies
that x, is increasing in y. Thus, we have the following: picking some arbitrary g, and letting

T = Ty,
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J(y) = Ulzy) —zyy

—U(z) — 5+

Ty

U'(w)dw —

y
(sdzs + x4ds)

S
S~

y y
=U@) —zy+ | U'(xs)drs — | (sdws + z4ds)

<
<

(using a Riemann-Stieltjes integral, chain rule and integration by parts).
Since U’ (x5) = s, this simplifies as

y
) = 9@~ [ s
y
But since z; = (U’)7!(s) is a continuous function of s, this shows that J is differentiable with

J'(y) = —ay.

1. J is strictly decreasing and strictly convex since J'(y) = —(U’)~!(y) is a strictly negative and
strictly increasing function of y.

2. We have J'(0) = —(U")71(0) = —o0 and J'(+00) = —(U’)"}(+00) = 0, by the Inada
conditions. We already saw earlier that J(0) = U(4+00).

Note that J(y) = sup,~o(U(z) —2y) > U(0) for any y > 0, by taking  — 0. Moreover,
J(y) < Ul(e) for small enough y > 0, since for y > U’(e), we have

U(z) —ay <U(z) <U(e)

if x < ¢, and we know that the maximiser x, must be in [0, €] (since U’ is decreasing). Thus,
taking € — 0 we get J(4o00) = U(0).

3. By definition, J(y) = sup,(U(z) — zy), from which we see that
J(y) —Ulx) > —xy
for any y,x > 0. We can also write it as
Ulz) < J(y) + zy.

On the other hand, for any = > 0 we know that this inequality is attained at y = U’(z), and
therefore
U(z) = inf J(y) + zy.
y>0

In the case of x = 0, we saw before that U(0) = J(+0o0), and we can show that this is equal
to the infimum.

4. We already showed this above.

5. Likewise.

Exercise 11.2 Let the financial market S = (Sk)k=0,...,n be defined over the finite filtered
probability space (2, F, (Fi)k=o,... n, P) and satisfy M?(S) # (), and let U be a utility function
satisfying the Inada conditions. Consider the value functions

dQ

- E[U(X do(y)= inf E|V(yZ2)],
)= s BIOCK) and o) = nt B |V (05 )]
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where V is the convex conjugate of U and
C(x) = {Xr € L°(Q, Fr,P) | VQ € M*(S) : Eq[X1] < x}.

Show that the optimisers X7 (z), Q(z) and §(z) satisfy U’ (X'T(x)> = @(x)% for each
z € dom(U).

Solution 11.2 From minimax considerations, and writing the Lagrangian L(Xr,y,Q) = E [U(XT) -y (%XT — xﬂ
for X7 € L°(Q), y > 0 and Q € M?(S), we have

sup FE|U(Xr)] =su inf L(X7,y,
o [U(X7)] WP ot o) (X1,9.Q)

dQ
- it EB|UX) -y X, —
ey y>0,QEM(S) [ (A7) y( r m)}

d
=  if E|\UXr) -y S5xr -
a0 [01007) —u (50— )

dQ
= if  E|V(yE)| -
Y>0,.QEMa(S) { (ydp)] Y
= 1 f — .
y>0,Ql£M“(S)v(y) e

Note that we obtain the third line by maximising for each fixed w, since we no longer have any
constraint on X (other than measurability). From question 1 we know that this supremum is
attained exactly when U'(X7) = y%. Furthermore, the last infimum is attained exactly when

PN : : : : dQ _ dQ(x)
y = §(z), and the infimum over the martingale measure is obtained exactly when 735 = =55~

Likewise, the supremum over Xr is attained exactly when X7 (). Therefore, the unique saddle

point of the Lagrangian satisfies U’ (XT(x)) = §(x) d?”(f), as we wanted.

Exercise 11.3 Let C' C Lg be convex, closed and bounded in probability, and assume that 1 € C.
Let D:={z € LY |Vf € C: E[zf] <1}. Show that for any g € L,

inf{r eRy |3f €C: af > g} =sup Elzg].
z€D

Solution 11.3 The inequality > is clear, since if 2 f > g, then > xE[zf] > E[zg] for any z € D,
and we can take infimum and supremum on each side of the inequality.

Ll
For the other inequality, let zg = sup,.p E[zg]. Let K = (C — L')N L' . One can see that
as in Kardaras that K is convex and closed in L'. Suppose that z% ¢ K. Then, by the Hahn-
Banach separation theorem, we can find some z € L™ such that E[zf] < 1 for all f € C and

E [zio} > 1. Since F[zf] < 1 for any f < 0, we easily see that z > 0 a.s.. Then, z € D. But

x

El|lzL| = __Blegl < 1, leading to a contradiction.
To sup_¢p Elzg]

Therefore, L € K, so that we can find f € C with f > z%, i.e. xof > g, as we wanted.

’Ig
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