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Exercise 11.1 Let U be a utility function satisfying the Inada conditions, i.e. U ∈ C1(R+;R) is
strictly increasing, strictly concave and

U ′(0) := lim
x↘0

U ′(x) = +∞

U ′(+∞) := lim
x→+∞

U ′(x) = 0.

Let J be the Legendre transform of −U(−·),

J(y) := sup
x>0

(U(x)− xy),

and denote by I := (U ′)−1 the inverse of the derivative of U .
Show the following properties:

1. J is strictly decreasing and strictly convex.

2. J ′(0) = −∞, J ′(+∞) = 0, J(0) = U(+∞) and J(+∞) = U(0).

3. For any x > 0,
U(x) = inf

y>0
(J(y) + xy).

4. For any y > 0,
J(y) = U(I(y))− yI(y).

5. J ′ = −I.

Solution 11.1
First we show that the supremum defining J is a maximum, i.e. for any y > 0, we have

J(y) = sup
x>0

(U(x)− xy) = U(xy)− xyy

for some xy > 0.
Note that, letting gy(x) = U(x)− xy, we have that gy is differentiable and

g′y(x) = U ′(x)− y.

Since U is C1 (i.e. U ′ is continuous), strictly convex (i.e. U ′ is strictly decreasing), with U ′(0) = +∞
and U ′(+∞) = 0 by the Inada conditions, we obtain exactly one solution to U ′(xy) = y. Moreover,
g′y is negative for x > xy and positive for x < xy. Thus the maximum is obtained exactly at
xy = (U ′)−1(y), which is a continuous, decreasing function of y (since U ′ is). We keep using the
notation xy.

On the other hand, we can see that for y ≤ 0, the maximum is obtained as x→ +∞ (since gy

is increasing in x), which gives that J(0) = U(+∞) (possibly = +∞) and J(y) = +∞ for y < 0.
We show first that J is differentiable on (0,+∞). Note that the equation U ′(xy) = y implies

that xy is increasing in y. Thus, we have the following: picking some arbitrary ȳ, and letting
x̄ = xȳ,
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J(y) = U(xy)− xyy

= U(x̄)− x̄ȳ +
∫ xy

x̄

U ′(w)dw −
∫ y

ȳ

(sdxs + xsds)

= U(x̄)− x̄ȳ +
∫ y

ȳ

U ′(xs)dxs −
∫ y

ȳ

(sdxs + xsds)

(using a Riemann-Stieltjes integral, chain rule and integration by parts).
Since U ′(xs) = s, this simplifies as

J(y) = J(ȳ)−
∫ y

ȳ

xsds.

But since xs = (U ′)−1(s) is a continuous function of s, this shows that J is differentiable with
J ′(y) = −xy.

1. J is strictly decreasing and strictly convex since J ′(y) = −(U ′)−1(y) is a strictly negative and
strictly increasing function of y.

2. We have J ′(0) = −(U ′)−1(0) = −∞ and J ′(+∞) = −(U ′)−1(+∞) = 0, by the Inada
conditions. We already saw earlier that J(0) = U(+∞).
Note that J(y) = supx>0(U(x) − xy) ≥ U(0) for any y > 0, by taking x → 0. Moreover,
J(y) ≤ U(ε) for small enough y > 0, since for y ≥ U ′(ε), we have

U(x)− xy ≤ U(x) ≤ U(ε)

if x ≤ ε, and we know that the maximiser xy must be in [0, ε] (since U ′ is decreasing). Thus,
taking ε→ 0 we get J(+∞) = U(0).

3. By definition, J(y) = supx>0(U(x)− xy), from which we see that

J(y)− U(x) ≥ −xy

for any y, x ≥ 0. We can also write it as

U(x) ≤ J(y) + xy.

On the other hand, for any x > 0 we know that this inequality is attained at y = U ′(x), and
therefore

U(x) = inf
y>0

J(y) + xy.

In the case of x = 0, we saw before that U(0) = J(+∞), and we can show that this is equal
to the infimum.

4. We already showed this above.

5. Likewise.

Exercise 11.2 Let the financial market S = (Sk)k=0,...,N be defined over the finite filtered
probability space (Ω,F , (Fk)k=0,...,N , P ) and satisfyMa(S) 6= ∅, and let U be a utility function
satisfying the Inada conditions. Consider the value functions

u(x) = sup
XT∈C(x)

E[U(XT )] and v(y) = inf
Q∈Ma(S)

E

[
V

(
y
dQ

dP

)]
,
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where V is the convex conjugate of U and

C(x) = {XT ∈ L0(Ω,FT , P ) | ∀Q ∈Ma(S) : EQ[XT ] ≤ x}.

Show that the optimisers X̂T (x), Q̂(x) and ŷ(x) satisfy U ′
(
X̂T (x)

)
= ŷ(x) dQ̂(x)

dP for each
x ∈ dom(U).

Solution 11.2 From minimax considerations, and writing the Lagrangian L(XT , y,Q) = E
[
U(XT )− y

(
dQ
dP XT − x

)]
for XT ∈ L0(Ω), y > 0 and Q ∈Ma(S), we have

sup
XT∈C(x)

E[U(XT )] = sup
XT

inf
y>0,Q∈Ma(S)

L(XT , y,Q)

= sup
XT

inf
y>0,Q∈Ma(S)

E

[
U(XT )− y

(
dQ

dP
XT − x

)]
= inf

y>0,Q∈Ma(S)
sup
XT

E

[
U(XT )− y

(
dQ

dP
XT − x

)]
= inf

y>0,Q∈Ma(S)
E

[
V

(
y
dQ

dP

)]
− xy

= inf
y>0,Q∈Ma(S)

v(y)− xy.

Note that we obtain the third line by maximising for each fixed ω, since we no longer have any
constraint on XT (other than measurability). From question 1 we know that this supremum is
attained exactly when U ′(XT ) = y dQ

dP . Furthermore, the last infimum is attained exactly when
y = ŷ(x), and the infimum over the martingale measure is obtained exactly when dQ

dP = dQ̂(x)
dP .

Likewise, the supremum over XT is attained exactly when X̂T (x). Therefore, the unique saddle
point of the Lagrangian satisfies U ′

(
X̂T (x)

)
= ŷ(x) dQ̂(x)

dP , as we wanted.

Exercise 11.3 Let C ⊆ L0
+ be convex, closed and bounded in probability, and assume that 1 ∈ C.

Let D := {z ∈ L0
+ | ∀f ∈ C : E[zf ] ≤ 1}. Show that for any g ∈ L∞,

inf{x ∈ R+ | ∃f ∈ C : xf ≥ g} = sup
z∈D

E[zg].

Solution 11.3 The inequality ≥ is clear, since if xf ≥ g, then x ≥ xE[zf ] ≥ E[zg] for any z ∈ D,
and we can take infimum and supremum on each side of the inequality.

For the other inequality, let x0 = supz∈D E[zg]. Let K = (C − L1) ∩ L1L1

. One can see that
as in Kardaras that K is convex and closed in L1. Suppose that g

x0
6∈ K. Then, by the Hahn-

Banach separation theorem, we can find some z ∈ L∞ such that E[zf ] ≤ 1 for all f ∈ C and
E
[
z g

x0

]
> 1. Since E[zf ] ≤ 1 for any f ≤ 0, we easily see that z ≥ 0 a.s.. Then, z ∈ D. But

E
[
z g

x0

]
= E[zg]

supz∈D E[zg] ≤ 1, leading to a contradiction.
Therefore, g

x0
∈ K, so that we can find f ∈ C with f ≥ g

x0
, i.e. x0f ≥ g, as we wanted.
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