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Exercise 2.1 Let W 1,W 2 be two independent Brownian motions.

(a) For two C2 functions f, g : R2 → R, let Xt = f(W 1
t ,W

2
t ) and Yt = g(W 1

t ,W
2
t ). Compute the

quadratic covariation of X and Y .

(b) Let Zt =
∫ t

0
(
cos sdW 1

s + sin sdW 2
s

)
. Prove that Z is a Brownian motion.

Solution 2.1

(a) By Itô’s formula, and using that [W 1]t = [W 2]t = t and [W 1,W 2]t = 0, as well as noting that,
by continuity, we may take time s instead of s− in the integrands, we obtain the following:

Xt = f(W 1
t ,W

2
t ) = f(0, 0) +

∫ t

0
fx(W 1

s ,W
2
s )dW 1

s +
∫ t

0
fy(W 1

s ,W
2
s )dW 2

s

+ 1
2

(∫ t

0
fxx(W 1

s ,W
2
s )ds+

∫ t

0
fyy(W 1

s ,W
2
s )ds

)
,

where fx is the partial derivative with respect to the first variable, etc.
We can also write in integral notation

X = f(0, 0) + fx(W 1
· ,W

2
· ) •W 1 + fy(W 1

· ,W
2
· ) •W 2 + 1

2(fxx(W 1
· ,W

2
· ) + fyy(W 1

· ,W
2
· )) · I,

where It = t. Alternatively, we can write in differential notation:

dXt = fx(W 1
t ,W

2
t )dW 1

t + fy(W 1
t ,W

2
t )dW 2

t + 1
2(fxx(W 1

t ,W
2
t ) + fyy(W 1

t ,W
2
t ))dt.

Similarly, Itô’s formula applied to Y yields

Y = g(0, 0) + gx(W 1
· ,W

2
· ) •W 1 + gy(W 1

· ,W
2
· ) •W 2 + 1

2(gxx(W 1
· ,W

2
· ) + gyy(W 1

· ,W
2
· )) · I.

Now, we can use the properties of stochastic integration and of quadratic variation to compute
the quadratic covariation of these two processes. Note that the constant terms and the
integrals against I do not matter in computing the quadratic covariation, since they are
continuous and of finite variation (and therefore of null quadratic variation). We are left with
the integrals against the two Brownian motions. By Itô’s isometry (Proposition 6.7 in the
lecture notes), as well as associativity (Proposition 5.5), we obtain

[fx(W 1
· ,W

2
· ) •W 1, gx(W 1

· ,W
2
· ) •W 1] = fx(W 1

· ,W
2
· ) · [W 1, gx(W 1

· ,W
2
· ) •W 1]

= fx(W 1
· ,W

2
· ) · (gx(W 1

· ,W
2
· ) · [W 1,W 1])

= fx(W 1
· ,W

2
· ) · (gx(W 1

· ,W
2
· ) · I)

= (fx(W 1
· ,W

2
· )gx(W 1

· ,W
2
· )) · I.

We can perform similar computations for the other pairs (note that [W 1,W 2] = 0, so the
cross-terms vanish). Therefore, we finally obtain
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[X,Y ]t =
∫ t

0
fx(W 1

s ,W
2
s )gx(W 1

s ,W
2
s )ds+

∫ t

0
fy(W 1

s ,W
2
s )gy(W 1

s ,W
2
s )ds.

(b) It is easy to see that, since cos and sin are bounded, Z is a local martingale. In more detail,
note that for each T > 0,

Zt∧T =
∫ t

0

(
cos sdW 1

s∧T + sin sdW 2
s∧T
)

is a martingale in H1 (e.g. by Proposition 6.7). Since this holds for any deterministic T > 0,
Z itself is a martingale (and in particular a local martingale).
Next, we compute the quadratic variation. Once again using Itô’s isometry and associativity,
along with the standard quadratic covariations of the Brownian motions, we obtain e.g.

[cos(·) •W 1] = [cos(·) •W 1, cos(·) •W 1]
= cos(·) · (cos(·) · [W 1,W 1])
= cos(·)2 · I,

so that we obtain
[Z]t =

∫ t

0
(cos(s)2 + sin(s)2)ds = t.

Noting that Z is a local martingale starting at 0 with the correct quadratic variation, Lévy’s
criterion gives that Z is a Brownian motion, as we wanted.

Exercise 2.2 Let N1, ..., Nm and W 1, ...,Wm all be independent, with each Nk a Poisson process
of rate 1 and each W k a Brownian motion, all starting at 0. Let Xk = Nk +W k for each k.

(a) Recall the formula for the stochastic exponential of a process given in the lecture notes.
Find the stochastic exponential Z of X =

∑m
k=1X

k, and check directly that it satisfies the
stochastic differential equation (SDE)

dZ = Z−dX, Z0 = 1.

By this we mean that the integrated form of this equation holds:

Zt − 1 = (Z− •X)t.

(b) Use Itô’s formula to find a decomposition for the process

Yt = |Xt|2α,

where Xt = (X1
t , ..., X

m
t ) and |Xt| =

(∑m
k=1(Xk

t )2) 1
2 , and we also assume α ∈ N.

(c) (optional) Let v ∈ Rm and suppose that P (∀t ≥ 0 Xt,Xt− 6= v) = 1.
Find a similar decomposition for the process

Ỹt = |Xt − v|2α,

where now α ∈ R.
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Solution 2.2 We use the simplified version of Itô’s lemma explained in class, i.e. if X = Xc +Xj

is a semimartingale decomposition with Xc continuous and Xj a pure jump process, then for f a
C2 function,

f(Xt) = f(X0) +
∫ t

0
f ′(Xs−)dXc

s + 1
2

∫ t

0
f ′′(Xs−)d[Xc]s +

∑
s≤t

(f(Xs)− f(Xs−)).

It can similarly be generalised to higher-dimensional processes.

(a) We likewise use the simplified formula for the stochastic exponential when such a decomposition
is available. The stochastic exponential is then given by

Zt = exp(Xc
t −

1
2 [Xc]t)

∏
s≤t

(1 + ∆Xj
s ).

For our given X, note that the quadratic variation of the continuous part (made up of
Brownian motions) can be readily computed, since we know all the covariations. Note also
that the jump part, as the sum of independent Poisson processes, is itself a Poisson process
of rate m, and therefore (almost surely) all of its jumps are of size 1. Therefore each of the
contributions to the product is a factor of size 2. We obtain the exponential as

Zt = exp
(

m∑
k=1

W k
t −

mt

2

)
2
∑m

k=1
Nkt .

To check that this truly is the stochastic exponential, note that it clearly is equal to 1 at time
0, and moreover, by (the simplified) Itô’s formula, as well as some simplifications using the
covariations of the Brownian motions, we obtain

Zt = 1 +
m∑
k=1

∫ t

0
Zs−dW

k
s −

∫ t

0

m

2 Zs−ds+ 1
2

(
m

∫ t

0
Zs−ds

)
+
∑
s≤t

(Zs − Zs−).

The middle two terms cancel. Note that, whenever a jump occurs, Z is multiplied by 2.
Therefore, each jump Zs − Zs− is the same as Zs−. Moreover, note that the jumps occur
whenever Xj =

∑m
k=1N

k jumps, and Xj has jumps of size 1. Therefore, we can further write∑
s≤t

(Zs − Zs−) =
∑
s≤t

Zs− = (Z− ·Xj)t.

This finally gives that

Z = 1 + (Z− •Xc) + (Z− ·Xj) = 1 + Z− •X,

as required.

(b) Similarly, the simplified version of Itô’s formula applied to f(x) = |x|2α (which is a smooth
function for α ∈ N) gives

Yt =
m∑
k=1

∫ t

0
2αY

α−1
α

s− (W k
s +Nk

s−)dW k
s + 1

2

m∑
k=1

∫ t

0

(
2αY

α−1
α

s− + 4α(α− 1)Y
α−2
α

s− (W k
s +Nk

s−)2
)
ds+

∑
s≤t

(Ys − Ys−).
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By summing up the middle terms, and noting that
∑m
k=1(W k

s +Nk
s−)2 = Y

1
α
s−, we obtain

Yt =
m∑
k=1

∫ t

0
2αY

α−1
α

s− (W k
s +Nk

s−)dW k
s + α(m+ 2(α− 1))

∫ t

0
Y
α−1
α

s− ds+
∑
s≤t

(Ys − Ys−).

This formula holds for all α ∈ N except α = 0, in which case Yt = 1 is trivial.

(c) By applying Itô’s formula similarly to the previous part, we obtain essentially the same result
for α ∈ N:

Yt = Y0 +
m∑
k=1

∫ t

0
2αY

α−1
α

s− (W k
s +Nk

s−)dW k
s + α(m+ 2(α− 1))

∫ t

0
Y
α−1
α

s− ds+
∑
s≤t

(Ys − Ys−).

(note the now non-trivial initial condition Y0 = |v|2α|).
If we want to extend this for α ∈ R, Itô’s formula alone does not suffice, since f(x) = |x−v|2α
is not a C2 function in general (or even well-defined at x = v).
Instead, consider τn = inf{t > 0 : |Xt − v| < 1

n} and a sequence of C2 functions fn such that
fn(x) = f(x) whenever |x− v| ≥ 1

n . Such functions are easy to construct in this case: one
possible approach is to find the correct constants an, bn, cn ∈ R such that the function

f̃n(r) =
{

|r|2α, |r| ≥ 1
n

ane
−bnx2 + cn, |r| < 1

n

is C2 on all of R, and then to take fn(x) = f̃n(|x− v|) (this is best understood by drawing a
graph). It is an easy check to see that this can be done, and that the resulting functions are
C2.
Now we are equipped with fn and τn. By Itô’s theorem, since the fn are C2, the corresponding
Itô formulas hold for each fn. Moreover, note that, by definition of the τn, |Xt − v| ≥ 1

n for
all t in the stochastic interval [0, τn). Since fn and f coincide whenever |x−v| ≥ 1

n , it follows
that, for each n,

Yt = Y0 +
m∑
k=1

∫ t

0
2αY

α−1
α

s− (W k
s +Nk

s−)dW k
s + α(m+ 2(α− 1))

∫ t

0
Y
α−1
α

s− ds+
∑
s≤t

(Ys − Ys−).

holds (almost surely) on [0, τn).
By countability, it follows that the same equation holds almost surely on the union of those
intervals, [0, limn→∞ τn) (since the sequence τn is increasing). All that remains is to show
that this limit is actually ∞ almost surely. This, however, follows from the assumption. We
can split the event A := {limn→∞ τn = c <∞} into the two cases

A1 := { lim
n→∞

τn = τ <∞ and for all n, τn < τ},

A2 := { lim
n→∞

τn = τ <∞ and for some n, τn = τ}.

Note that, by right-continuity and definition of the τn, |Xτn − v| ≤ 1
n whenever τn < ∞.

Therefore, in the first case, we must have that Xτ− = limn→∞Xτn = v, which by assumption
means that A1 happens with probability 0. Likewise, A2 implies that |Xτ−v| ≤ 1

n | for all large
n, and so Xτ = v, which again has probability 0. Thus the previously given decomposition
holds at all times almost surely.
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Exercise 2.3

(a) Let x be a càdlàg function on [0, 1], and let πn be a refining sequence of dyadic rational
partitions of [0, 1] with limn→∞mesh(πn) = 0. Show that, if the sum∑

tn
k
,tn
k+1∈πn

y(tnk )(x(tnk+1)− x(tnk ))

converges to a finite limit for every càglàd function on [0, 1], then x is of finite variation.

(b) Let X be a good integrator, and let Πn be a sequence of partitions tending to identity. Show
that ∑

τn
k
,τn
k+1∈Πn

Yτn
k

(Xτn
k+1
−Xτn

k
) ucp→ (Y •X)

for every adapted càglàd process Y .

Solution 2.3

(a) The family of càglàd functions L([0, 1]) equipped with the uniform norm is a Banach space.
For y ∈ L([0, 1]), let

Tn(y) :=
∑

tn
k
,tn
k+1∈πn

y(tnk )(x(tnk+1)− x(tnk )).

For each n, pick any y ∈ L([0, 1]) such that y(tnk ) = sign
(
x(tnk+1 − x(tnk )

)
and ||y||∞ = 1

(such a y clearly exists). Then we have

Tn(y) =
∑

tn
k
,tn
k+1∈πn

|x(tnk+1)− x(tnk )|.

Therefore
||Tn|| ≥

∑
tn
k
,tn
k+1∈πn

|x(tnk+1)− x(tnk )|,

for each n, and
sup
n
||Tn|| ≥ the total variation of x.

On the other hand, for each y ∈ L([0, 1]), limn→∞ Tn(y) exists and therefore supn |Tn(y)| <∞.
By the Banach-Steinhaus theorem, we have supn ||Tn|| <∞, and the total variation of x is
finite.

(b) Recall that a sequence of partitions tending to identity consists of a sequence of collections
of stopping times Πn := {0 = τn0 < ... < τnk < ∞} such that supk |τnk+1 − τnk | → 0 and
supl τnk →∞ as n→∞. For such Πn and a given Z ∈ L, denote

ZΠn :=
∑

τn
k
,τn
k+1∈Πn

Zτn
k
1(τn

k
,τn
k+1].

Since S is an ucp-dense subset of L and Y ∈ L, we find a sequence (Y m) of bounded simple
processes such that Y m ucp→ Y . Then we can rewrite

((Y − Y Πn) •X) = ((Y − Y m) •X) + ((Y m − (Y m)Πn) •X) + (((Y m)Πn − Y Πn) •X).

Since d((Y m)Πn) ≤ d(Y m, Y ) for all n, the continuity of the map Y 7→ (Y •X) (i.e. the fact
that X is a good integrator) gives that ((Y m−Y ) •X) ucp→ 0 and (((Y m)Πn −Y Πn) •X) ucp→ 0
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as m→∞. Moreover, the observation that d((Y m)Πn) ≤ d(Y m, Y ) for all n means that this
convergence is uniform in n.
We are then left with the middle term to deal with. As we will see, this is an easier task since
we only need to work with simple processes. We know that Y m ∈ S can be written in the
form

Y ms (ω) = Y m0 (ω) +
M∑
i=1

Yσi(ω)1(σi(ω),σi+1(ω)](s).

(note that both M and the σi depend implicitly on m).
Then,

(Y m)Πn
s (ω) = Y m0 (ω) +

k∑
j=1

Y mτn
j
1(τn

j
(ω),τn

j+1(ω)](s)

and denote tni (ω) := inf{τnk (ω) : τnk (ω) > σi(ω)} for each i = 1, ...,M . With this choice,
note that, on each interval (σi(ω), σi+1(ω)], Y m(ω) and (Y m)Πn(ω) can only differ on s ∈
(σi(ω), tni (ω)], since afterwards (Y m)Πn is “reset” to have the same value as Y m. Moreover,
on s ∈ (σi(ω), tni (ω)] there is a constant difference between Y m(ω) and Y (Y m)Πn(ω) of at
most 2||Y ||∞. Therefore, this inequality follows:

sup
s≤t
|((Y m − (Y m)Πn) •X)s(ω)| ≤ 2||Y ||∞

M∑
i=1
|Xtn

i
(ω) −Xσi(ω)|.

Then, right-continuity of X, the bound on Y and the fact that the mesh goes to identity
almost surely gives that

sup
s≤t
|((Y m − (Y m)Πn) •X)s(ω)| → 0

as n→∞ almost surely, and thus also in probability.
This yields the result we want. More concretely, we can choose large enough m such that
((Y −Y m) •X) and (((Y m)Πn −Y Πn) •X) are close to 0 in ucp topology, the latter uniformly
over n. Then, we can pick n large enough that the middle term is also close to 0 in ucp
topology. This completes the proof.
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