Mathematical Finance

Exercise sheet 4

Let S denote the set of semimartingales and $\mathbb{S}_1 := \{H \in \mathbb{S} : ||H||_{\infty} \leq 1\}$ the unit ball of simple predictable processes. The Emery topology is a topology on S generated by the metric

$$d_E(X,Y) := \sum_{n=1}^{\infty} 2^{-n} \sup_{H \in \mathbb{S}_1} E\left[1 \wedge \sup_{t \le n} |(H \bullet (X - Y))_t| \right].$$

Exercise 4.1 Show that

- (a) \mathcal{S} endowed with the Emery topology is a topological vector space.
- (b) S is closed in the Emery topology and complete with respect to the metric d_E .

Solution 4.1 Note that, for $(X^n) \subset S$ and $X \in S$, we have

$$d_E(X^n, X) \to 0$$

if and only if

$$(H^n \bullet (X^n - X)) \stackrel{\text{ucp}}{\to} 0 \text{ for any } (H^n) \subset \mathbb{S}_1$$

(a) Let $X, Y \in S$. We have $d_E(X + Y, 0) \leq d_E(X, 0) + d_E(Y, 0)$ (one can see this from the corresponding triangle inequality for d), so that addition is jointly continuous.

Moreover, $d_E(cX, 0) \leq d_E(X, 0)$ for real $|c| \leq 1$. To show that scalar multiplication is jointly continuous, let $c^n \to c$ and $X^n \to X$, the latter in Emery topology. To show that $c_n X_n \to cX$ in Emery topology, it is enough to show that the two differences $c_n(X_n - X)$ and $(c_n - c)X$ converge to 0 in Emery topology.

The first one converges to 0 thanks to the previous observation that $d_E(c_n(X_n - X), 0) \leq d_E(X_n - X, 0) \rightarrow 0$. The second one follows from the fact that X is a good integrator, giving that

$$c^n - c \to 0 \implies (c^n - c)H^n \stackrel{\text{ucp}}{\to} 0 \implies (((c^n - c)H^n) \bullet X) \stackrel{\text{ucp}}{\to} 0$$

for any $(H^n) \subset \mathbb{S}_1$.

- (b) The metric d_E is stronger than the metric d of the ucp topology. By the completeness of d for \mathbb{D} , a Cauchy sequence (X^n) in the metric d_E converges in d to a càdlàg process X.
 - Step 1: We show that $P((H \bullet X^n)_T^* > K) \to 0$ uniformly in n and H with $||H||_{\infty} \leq 1$. Let $\epsilon > 0$. Since X is Cauchy, we can choose a large enough m such that $P((H \bullet (X^n - X^m))_T^* > 1) < \epsilon$ for any $H \in \mathbb{S}_1$ and $n \geq m$. Moreover, we can choose K large enough that

$$P((H \bullet X^n)_T^* > K - 1) < \epsilon$$

for any $H \in S_1$ and n = 1, ..., m. This is possible since the X^n are good integrators and we only consider finitely many of them.

For that choice of m and K, we have that

$$P((H \bullet X^n)_T^* > K) \le P((H \bullet X^n)_T^* > K - 1) < \epsilon$$

if n = 1, ..., m, and

$$P((H \bullet X^n)_T^* > K) \le P((H \bullet X^m)_T^* > K - 1) + P((H \bullet (X^n - X^m))_T^* > 1) < 2\epsilon$$

if $n \ge m$. This shows what we wanted.

Updated: November 4, 2019

• Step 2: We show that X is a good integrator.

Consider a simple integrand $H = \sum_{i=1}^{m} H_i \mathbb{1}_{(\tau_i, \tau_{i+1}]}$ for some stopping times τ_i and \mathcal{F}_{τ_i} -measurable H_i bounded by 1. Then we can easily see that

$$(H \bullet Y)_T^* \le \sum_{i=1}^m |H_i| \sup_{s \in (\tau_i, \tau_{i+1}]} |Y_s - Y_{\tau_i}| \le 2mY_T^*,$$

for any process Y.

Now, let $\epsilon > 0$. Let K be large enough that $P((H \bullet X^n)_T^* > K - 1) < \epsilon$ for all $H \in \mathbb{S}_1$ and all n. Take now any $H \in \mathbb{S}_1$. If H can be decomposed into m summands as above, use the ucp convergence to find n large enough that $P((X^n - X)_t^* > \frac{1}{2m}) < \epsilon$. Then, for that choice of K (which is independent of the choice of H), we have that

$$P((H \bullet X)_T^* > K) \le P((H \bullet X^n)_T^* > K - 1) + P((H \bullet (X - X^n))_T^* > 1)$$

$$\le \epsilon + P(2m(X - X^n)_T^* > 1)$$

$$< 2\epsilon.$$

Thus, X is a good integrator.

• Step 3: $X^n \to X$ in the Emery topology.

This is now quite similar to step 2. Take $\epsilon > 0$ and a > 0. Find N large enough that $\sup_{H \in \mathbb{S}_1} P((H \bullet (X^m - X^n))_T^* > \frac{a}{2}) < \epsilon$, for $n, m \ge N$. For some $H \in \mathbb{S}_1$, decomposable into m summands, find $n' \ge N$ large enough that $P((X - X^{n'})_T^* > \frac{a}{4m}) < \epsilon$. Then, for that H and any $n \ge N$,

$$P((H \bullet (X - X^{n}))_{T}^{*} > a) \leq P((H \bullet (X^{n'} - X^{n})_{T}^{*} > \frac{a}{2}) + P((H \bullet (X - X^{n'}))_{T}^{*} > \frac{a}{2})$$
$$\leq \epsilon + P(2m(X - X^{n'})_{T}^{*} > \frac{a}{2})$$
$$< 2\epsilon.$$

Since the choice of N does not depend on H, this proves the result.

Exercise 4.2 Show that the Emery topology is invariant under an equivalent change of measure.

Solution 4.2 It is clearly enough that $X^n \to 0$ in Emery metric under P if and only if the same convergence holds under Q, for any equivalent measure Q. Let Q be an equivalent measure with Radon-Nikodym derivative $\frac{dQ}{dP} = Z$, and suppose that $X^n \to 0$ in Emery metric under P. This means that for a, T > 0,

$$\sup_{H \in \mathbb{S}_1} P((H \bullet X^n)_T^* > a) =: \epsilon_n \to 0.$$

Now, for $H \in \mathbb{S}_1$, we have that

$$Q((H \bullet X^n)_T^* > a) = P(Z \mathbb{1}_{(H \bullet X^n)_T^* > a})$$

$$\leq \sup_{A \in \Omega: P(A) < \epsilon_n} P(Z \mathbb{1}_A) =: \delta_n \to 0$$

as $n \to \infty$, since $\epsilon_n \to 0$ and $\{Z\}$ is a *P*-uniformly integrable family (as *Z* is *P*-integrable). Since the δ_n are uniform in *H*, we obtain the desired convergence in Emery metric under *Q*. The other direction is proved by symmetry. **Exercise 4.3** Let the set of adapted càglàd processes \mathbb{L} be endowed with the u.c.p. topology and the set of semimartingales S be endowed with the Emery topology, and let X be a semimartingale. Show that

$$J_X : \mathbb{L} \ni Y \mapsto (Y \bullet X) \in S$$

is continuous.

Solution 4.3 Let $(Y^n) \subset \mathbb{L}$ such that $Y^n \xrightarrow{u.c.p.} 0$ and $(H^n) \subset \mathbb{S}_1$. Then $H^n Y^n \xrightarrow{u.c.p.} 0$ and consequently

$$(H^n \bullet (Y^n \bullet X)) = ((H^n Y^n) \bullet X) \stackrel{u.c.p.}{\to} 0,$$

i.e., $(Y^n \bullet X) \to 0$ in the Emery topology.

Exercise 4.4 Define fractional Brownian motion (fBm) with Hurst parameter $H \in (0, 1)$ as a Gaussian process $(X_t)_{t \in \mathbb{R}_+}$ such $E[X_t] = 0$ for all $t \ge 0$ and the covariance function is given by

$$E[X_t X_s] = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H})$$

for all $t, s \ge 0$.

We take a continuous version of X and denote it by W^H .

(a) Check that:

• The formula for the covariance is equivalent to the condition

$$E[|X_t - X_s|^2] = |t - s|^{2H}$$

for $t, s \ge 0$, together with $X_0 = 0$ almost surely.

- For c > 0, $(\frac{1}{c^H} W_{ct}^H)_{t \ge 0}$ is a fBm of Hurst parameter H.
- For $t_0 > 0$, $(W_{t+t_0}^H W_{t_0}^H)_{t \ge 0}$ is a fBm of Hurst parameter H.
- For $H = \frac{1}{2}$, W^H is a Brownian motion.
- (b) Use Birkhoff's ergodic theorem to compute the almost sure limit

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^{2^n - 1} |W_{k+1}^H - W_k^H|^p$$

for p > 0.

- (c) Deduce that, for $H < \frac{1}{2}$, W^H has infinite quadratic variation.
- (d) (Python) Using the scripts available on the lecturer's website, find discrete approximations to the quadratic variation of W^H and convince yourself that (c) holds.

Solution 4.4

(a) • From the original formula we can deduce that $E[X_0^2] = 0$, so that it is 0 a.s. Note also that if t = s, we obtain $E[X_t^2] = |t|^{2H}$. Therefore,

$$E[(X_t - X_s)^2] = E[X_t^2] + E[X_s^2] - 2E[X_tX_s]$$

= $|t|^{2H} + |s|^{2H} - (|t|^{2H} + |s|^{2H} - |t - s|^{2H})$
= $|t - s|^{2H}$

as we wanted.

Updated: November 4, 2019

In the other direction, since $X_0 = 0$ a.s., we obtain that

$$E[X_t^2] = E[(X_t - X_0)^2] = |t|^{2H}$$

so that

$$|t - s|^{2H} = E[(X_t - X_s)^2]$$

= $|t|^{2H} + |s|^{2H} - 2E[X_t X_s],$

which implies the original formula for the covariance function.

• If $Y_t = \frac{1}{c^H} W_{ct}^H$, note that $E[Y_t] = 0$, Y is continuous and

$$\begin{split} E[Y_t Y_s] &= E\left[\frac{1}{c^H} W_{ct}^H \frac{1}{c^H} W_{cs}^H\right] \\ &= \frac{1}{c^{2H}} \frac{1}{2} (|ct|^{2H} + |cs|^{2H} - |ct - cs|^{2H}) \\ &= \frac{1}{2} (|t|^{2H} + |s|^{2H} - |t - s|^{2H}), \end{split}$$

so that Y is again a fBm of Hurst parameter H.

• Let $Z_t = W_{t+t_0}^H - W_{t_0}^H$ be the new process. We use the alternative characterisation from the first point: clearly Z is continuous, $E[Z_t] = 0$, $Z_0 = 0$ almost surely and

$$E[|Z_t - Z_s|^2] = E[((W_{t+t_0}^H - W_{t_0}^H) - (W_{s+t_0}^H - W_{t_0}^H))^2]$$

= $E[(W_{t+t_0}^H - W_{s+t_0}^H)^2]$
= $|t - s|^{2H}$

so that Z is a fBM of Hurst parameter H.

• If $H = \frac{1}{2}$, we obtain that, for $t \ge s$,

$$E[W_t^H W_s^H] = \frac{1}{2}(|t| + |s| - |t - s|)$$

= $\frac{1}{2}(t + s - (t - s))$
= $s.$

In general, $E[W_t^H W_s^H] = t \wedge s$. This is the covariance function of Brownian motion, and since W^H is continuous it is a Brownian motion for $H = \frac{1}{2}$.

(b) We consider the canonical space $(\Omega, \mathcal{F}, P^H)$ where $\Omega = \mathbb{R}^{\mathbb{N}}$, \mathcal{F} is the cylindrical σ -algebra and P^H is the law of $(W_n^H)_{n \in \mathbb{N}}$ for W^H a fBm with parameter H. We consider the shift operator T given by $T(X_n)_{n \in \mathbb{N}} = (X_{n+1} - X_1)_{n \in \mathbb{N}}$, as well as the map f given by $f(X_n)_{n \in \mathbb{N}} = |X_1|^p$. T is measure preserving since $W_{s+1}^H - W_1^H$ is a fBm of parameter H, and hence its values on \mathbb{N} have the same joint law as those of W^H itself. Moreover, we can see that T is ergodic. Therefore, Birkhoff's ergodic theorem gives us that

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^{2^n - 1} |W_{k+1}^H - W_k^H|^p = E[|W_1^H|^p]$$

for p > 0. By the definition of fBm, W_1^H is normally distributed with distribution $\mathcal{N}(0, 1)$, so that the limit is $c_p = E[|Z|^p]$ for Z a standard normal random variable.

(c) Note that, by the first part, $(2^{nH}W_{2^{-n}t}^{H})_{t\geq 0}$ is a fBm of Hurst parameter H. Therefore, we have the equality in law

$$\begin{aligned} \frac{1}{2^n} \sum_{k=0}^{2^n-1} |W_{k+1}^H - W_k^H|^p \stackrel{\mathrm{d}}{=} \frac{1}{2^n} \sum_{k=0}^{2^n-1} 2^{nHp} |W_{2^{-n}(k+1)}^H - W_{2^{-n}k}^H|^p \\ \stackrel{\mathrm{d}}{=} 2^{n(Hp-1)} \sum_{k=0}^{2^n-1} |W_{2^{-n}(k+1)}^H - W_{2^{-n}k}^H|^p. \end{aligned}$$

Thus, due to the previous part, we have the convergence at least in distribution:

$$2^{n(Hp-1)} \sum_{k=0}^{2^n-1} |W_{2^{-n}(k+1)}^H - W_{2^{-n}k}^H|^p \stackrel{\mathrm{d}}{\to} c_p$$

Since the limit in distribution is a constant, the convergence also holds in probability. In particular, if $H < \frac{1}{2}$ and p = 2, the term $2^{n(Hp-1)}$ goes to 0 so that the quadratic variation is infinite.