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Quick recap:

• Properties of integrals of extended real valued functions:

– monotonicity (larger function has larger integral)

– Tchebychev inequality (measure of super level set controlled by integral)

– L1 convergence implies convergence in measure and almost everywhere conver-
gence of subsequence

– “triangle inequality” (put absolute value inside for an upper bound)

– linearity of summable functions

– additive over domain of integration

– (Properly!) Riemann integrable functions are Lebesgue integrable

• Fatou’s Lemma: for sequence of non-negative measurable functions, take lim inf out of
integral for an upper bound. (Proof: approximations by simple functions from below
have a tail satisfying the inequality nearly on whole domain.)

• Monotone Convergence/Beppo Levi’s Theorem: For increasing sequence of non-nega-
tive measurable functions, limit and integration commute. (Proof: use monotonicity
and Fatou’s Lemma for the opposite inequality.)

• Dominated Convergence/Lebesgue Theorem: an almost everywhere converging se-
quence dominated by a summable function converges in L1. (Proof: apply Fatou’s
lemma on the dominating function minus the absolute difference of the sequence and
the limit, which is non-negative.)

• Differentiation under integral sign on a bounded domain is justified when the integrand
has bounded derivative. (Proof: the derivative in absolute value dominates and is
summable.)

• Absolute continuity: A summable function has arbitrarily small integral on domains of
small enough measure. (Proof: The lim sup of the set of geometrically small measure
on which has a positive lower bound has zero measure. Pass to limit using Dominated
Convergence Theorem for a contradiction.)

• Vitali’s Theorem: On a domain of finite measure, a sequence converges in L1 if and only
if it is uniformly summable and converges in measure. (Main idea: Forward implication
uses Tchebychev inequality. In backward implication, a subsequence converges almost
everywhere, and by Egoroff’s Theorem, it suffices to prove convergence in a set A of
small measure. Now, for both implications, observe that one of the quantities

∫
A
|f |,∫

A
|fk| or

∫
A
|f − fk| is small if the other two are.)
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Exercise 10.1.

(a) For which s > 0 is it true that ∫ b

a

1

xs
dx <∞ ,

for (a, b) = (0, 1), (1,∞), (0,∞)?

Guideline:

•Use continuity and non-negativity of x−s to conclude measurability and integrability.

•Find upper and lower bounds by comparing x−s to, say, simple functions like g(x) = ns

for s ∈ [ 1
n+1

, 1
n
).

•Note that computing the corresponding improper Riemann integrals give the ranges of
s but does not prove the results directly.

(b) The Gamma-function is defined by

Γ(s) =

∫ ∞
0

e−xxs−1dx ,

for s ∈ R, s > 0. Show that Γ is everywhere differentiable and calculate its derivative in
integral form.

Guideline:

•Formally, differentiate under integral sign to obtain the desired derivative.

•To justify using Dominated Convergence Theorem, find a summable function which
dominates log(x)e−xxs−1, uniformly on some interval of s.

•Near infinity, any (mildly) growing exponential controls log(x)xs−1.

•Near the origin, any (small) negative power controls log(x)e−x.

Exercise 10.2.
Let f : (0,∞)→ R be defined by f(x) := sin(x)

x
. Prove that f is improper Riemann integrable

(i.e. the improper Riemann integral exists and is finite), but is not Lebesgue summable.

Hint: You may want to use some results from Analysis 1 and 2. This exercise provides an
explicit example for Ex. 8.6.

Guideline:

•To show f is improper Riemann integrable, integrate by parts on any bounded interval
to see an integrand with inverse square decay. Convergence is guaranteed by Cauchy’s
criterion.
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•To show f is not Lebesgue summable, obtain a lower bound for
∫
|f |, on the region

where | sin(x)| has a positive lower bound, as a harmonic series.

Exercise 10.3.
Let µ(Ω) <∞ and f, fk : Ω→ R µ-summable.

(a) Show that Vitali’s Theorem implies Lebesgue’s Theorem about dominated convergence.

Guideline:

•Take a sequence converging µ-almost everywhere. Finite total measure implies conver-
gence in measure.

•Uniform µ-summability is guaranteed by the absolute continuity of the integral of the
dominating function.

•We need to provide an alternative proof of the absolute continuity without using Dom-
inated Convergence Theorem as in the lecture.

Theorem: Let f : Ω→ R µ-summable. Then for every ε > 0, there exists a δ > 0 such
that for all µ-measurable subsets A ⊂ Ω with µ(A) < δ, it holds

∫
A
|f |dµ < ε

•Hint: for f ≥ 0, consider the cut-off function fn = min{f, n} ↗ f µ-a.e. and write
|f | ≤ |f − fN |+ |fN | for a suitably large N .

(b) Let Ω = [0, 1]. Give an example in which Vitali’s Theorem can be applied but there does
not exists a dominating function g ∈ L1([0, 1]).

Hint: Look at fk = χ[ k−2n

2n
, k+1−2n

2n
[

Guideline:

•The sequence of functions in the Hint is a typical example that converges in measure
but not almost everywhere.

•Multiply a characteristic function of sufficiently small intervals by 1/x, so that the
sequence cannot be dominated by a summable function.

Exercise 10.4.
(Generalized Hölder-inequality) Let 1 ≤ p1, . . . , pk ≤ ∞ be given such that 1

r
=∑k

i=1
1
pi
≤ 1. Show that for fi ∈ Lpi(Ω, µ) it holds

∏k
i=1 fi ∈ Lr(Ω, µ) and

∥∥∥∥ k∏
i=1

fi

∥∥∥∥
Lr

≤
k∏

i=1

‖fi‖Lpi .
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Guideline:

•Use induction on k.

•Use Hölder’s inequality if all pi <∞.

•If f ∈ Lp and g ∈ L∞, use ‖fg‖Lp ≤ ‖f‖Lp‖g‖L∞ .

Exercise 10.5.
Let 1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1. Show that fn

n→∞−−−→ f in Lp(Ω, µ) implies∫
Ω

fn g dµ
n→∞−−−→

∫
Ω

f g dµ

for all g ∈ Lq(Ω).

Guideline:

•Take the difference and use Hölder’s inequality.
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