
D-MATH
Prof. Francesca Da Lio

Measure and Integration
Guidelines Sheet 7

ETH Zürich
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Quick recap:

• A extended-real valued function is measurable if preimages of extended half intervals
(equivalently: open sets, or Borel sets) are measurable. Example: continuous function.

• Measurability is preserved by algebraic operations and taking suprema and infima.

• A non-negative measurable function can be decomposed into simple functions with
coefficients as reciprocal of integers. The corresponding measurable sets are determined
by a greedy algorithm. (Proof: include each term whenever possible, and use the
divergence of the harmonic series to approximate any positive number from below.)

• Egoroff’s theorem: a sequence of functions on a set of finite measure with a almost
everywhere finite pointwise limit, converge almost uniformly, meaning that away from
a set of arbitrarily small positive measure, the convergence is uniform. (Proof: quantify
the exceptional sets. Check their intersection has zero measure, hence arbitrarily small
at some finite index.)

• Lusin’s theorem: a measurable function is nearly continuous, meaning that it has a
continuous restriction on a compact set which has relatively arbitrarily large measure.
(Proof: for simple functions one restricts to the complement of the jump set. A gen-
eral measurable function is approximated pointiwse by simple functions. By Egoroff’s
theorem this convergence is uniform on a large compact set, preserving continuity.)

• A simple function takes at most countably many values.

• The integral of a simple function is a countable sum, with infinity minus infinity avoided
in the setting.

• The integral of a measurable function is defined when lower and upper integrals (supre-
mum and infimum of integrals of simple functions below and above) agree, called in-
tegrable

• A measurable function is summable if it has a finite integral.

Exercise 7.1.
Let f : R→ R be differentiable with continuous derivative. Show the following inequality:

dimH f(A) ≤ dimHA,

for all subsets A ⊂ R.

Guideline:

•The Hausdorff measure is σ-finite.

•A continuously differentiable function is Lipschitz on each bounded set.

•Compute any higher dimensional Hausdorff measure as 0.
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Exercise 7.2.
Let fk : Rn → R be Ln-measurable functions (k ∈ N). Let:

Ln({x | ‖fk(x)− fk+1(x)‖ > 2−k}) < 2−k

for all k ∈ N. Show: The limit lim
k→∞

fk(x) exists almost everywhere.

Guideline:

•The intersection of the tail of the family Ak = {x ∈ Rn |‖fk(x)− fk+1(x)‖ ≤ 2−k} has
arbitrarily (in fact geometrically) small measure.

•On each of such intersection, summing up functions with consecutive indices shows
that the sequence of functions is Cauchy.

Exercise 7.3.
Let f be a finite, µ-measurable function, and (fk)k∈N a sequence of µ-measurable functions
with the following property: Every (fkj)j∈N contains a subsequence, which converges to f in
measure µ.

(a) Show that the whole sequence (fk)k∈N converges to f in measure µ.

Guideline:

•If not, there is a subsequence without a converging subsubsequence.

(b) Show that the analogous statement from a) is not true, if we assume only pointwise
convergence µ-almost everywhere.

Guideline:

•Consider the sequence in Remark 2.4.3, 2), of the Lecture Notes.

•The sequence is not convergent at any given point (Theorem 2.4.2).

•The sequence has a subsequence converging pointwise to zero: For any dyadic length
(negative power of 2), pick the interval that supports the given subsequence infinitely
often. The subsubsequence supported by these intervals converges.

Exercise 7.4.
Counterexample to δ = 0 in Lusin’s Theorem: Find an example of a sequence of L1-
measurable functions fk : [0, 1] → R such that for all M ⊂ [0, 1] L1-measurable sets with
L1(M) = 1, the restriction f |M : M → R is not continuous in every point of M .

Hint: You may use that there exists a Lebesgue-measurable subset A ⊂ [0, 1], such that for
all non-empty, open subsets U ⊂ [0, 1], we have:

L1(U ∩ A) · L1(U ∩ Ac) > 0.

Such a set A can be constructed using the Cantor set.
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ETH Zürich
FS 2020

Guideline:

•Take the characteristic function of A as in the hint.

•Around every interior point, pick a sequence of open intervals of arbitrarily small length
and use them as U .

•By measurability, there exist two sequences of points, one contained in A and the other
in Ac, converging to the same point, contradicting continuity.

•Extra: To construct A use the following procedure.

1.Put a fat Cantor set (middle 1/4 gets removed instead) on [0, 1]. It has Lebesgue
measure 1/2.

2.Put a scaled copy of the fat Cantor set in each remaining (removed) interval.

3.Put a scaled copy of the fat Cantor set in each remaining interval after Step 2.

4.Repeat indefinitely.

A is the union of all sets being put in the even steps.

Exercise 7.5.
Counterexample to δ = 0 in Egoroff’s Theorem: Find an example of a sequence of L1-
measurable functions fk : [0, 1] → R, which converges almost everywhere pointwise to the
function f , but for every compact F ⊂ [0, 1] with L1(F ) = L1([0, 1]) the convergence on F
is not uniformly.

Guideline:

•The monomials on the unit interval indexed by the exponent converges almost every-
where pointwise to zero.

•The convergence is not uniform in any neighborhood of 1.

Exercise 7.6.
Let f : R→ R be a Lebesgue-measurable function with

f(x+ y) = f(x) + f(y)

(a) Show that f is continuous.

Hint: Use Lusin’s Theorem to show that f is continuous at x = 0.

Guideline:

•Find f(0) by putting x = y = 0.
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•By Lusin’s Theorem, f is uniformly continuous on a large compact subset F of the
unit interval.

•F intersects with its translation by any small number, since their union would have
too large a measure if they were disjoint.

•The uniform continuity at such intersection is “shifted to the origin” using the given
functional equation.

(b) Show that
f(x) = x · f(1).

Guideline:

•Put y as integer multiples of x.

•The conclusion holds when x is rational, by the previous step.

•Take a limit using the density of the rationals and the continuity from part (a).

Exercise 7.7.
In this exercise, we construct a set which is Lebesgue-measurable, but not Borel and use the
construction to give a counterexample of a continuous G : R→ R and a Lebesgue measurable
F : R→ R such that F ◦G is not Lebesgue measurable.

(a) Let h : [0, 1]→ [0, 1] be the Cantor function as seen in Ex. 4.3. Define g : [0, 1]→ [0, 2]
by g(x) := h(x) + x. Show that g is strictly monotone and a homeomorphism.

Guideline:

•A sum of strictly increasing and monotonically increasing functions is strictly increas-
ing.

•An open interval in [0, 1] is homeomorphic under g to an open interval in [0, 2]. Take
a countable union for general open sets.

(b) Denote by C ⊂ [0, 1] the Cantor set. Show that L1(g(C)) = 1.

Hint: Use the natural decomposition of [0, 1] \ C to deduce the result.

Guideline:

•Relate the measure of g(C) to the sum of measures of the image of removed intervals
under g.

•The Cantor function h is constant on each removed interval.

(c) Use Ex. 4.5.a) to find a non-measurable subset E ⊂ g(C). Finally, define A := g−1(E).
Show that A is a Lebesgue zero set and thus Lebesgue measurable.
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Guideline:

•Show that A is contained in C, hence null and measurable.

(d) Show that A is not a Borel set.

Hint: Otherwise, the preimage of A with respect to continuous maps would necessarily be
Borel and thus Lebesgue measurable as well.

Guideline:

•Use the hint with the continuous map g−1 to conclude that E is Borel, a contradiction.

(e) Find appropriate F,G as outlined above using the sets and functions introduced in the
previous subtasks such that F ◦G is not Lebesgue measurable.

Guideline:

•We want E to be the preimage of a Borel set under the composition.

•Rearrange to see that we can take F as the characteristic function of A and G as g−1,
and that Borel set is the closed set {1}.

Exercise 7.8.
Take a Radon measure µ on Rn and let Ω ⊂ Rn be a µ-measurable subset. Consider a
function f : Ω→ R which is 0 µ-a.e. Show that f is summable with

∫
Ω
fdµ = 0.

Guideline:

•f is measurable because the preimage of a half interval is either a null set or a com-
plement of a null set.

•Compute lower and upper integrals by bounding f by 0 almost everywhere.

Exercise 7.9.
Let f, g : Ω→ R be µ-integrable and assume it holds:∫

A

fdµ ≤
∫
A

gdµ,

for all A ⊂ Ω µ-measurable. Show that f ≤ g µ-almost everywhere. Moreover, conclude
that if: ∫

A

fdµ =

∫
A

gdµ,

for all A ⊂ Ω µ-measurable, then f = g µ-almost everywhere.
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ETH Zürich
FS 2020

Guideline:

•Put An as the set where opposite inequality holds with an extra space of 1/n.

•Close the inequality and deduce An is a null set. Take the limit.

Exercise 7.10.
Denote by µ the Lebesgue measure on R. Find examples for the following statements:

(a) fn → 0 uniformly, but not
∫
|fn|dµ→ 0.

Guideline:

•Look at characteristic functions so that the integral represents the mass (area) of a
rectangle.

•Spread the mass with small height and large width.

(b) fn → 0 pointwise and in measure, but neither fn → 0 uniformly nor
∫
|fn|dµ→ 0.

Guideline:

•Consider characteristic functions again.

•Since uniform convergence is not needed, concentrate the mass by choosing large height
and small width.

(c) fn → 0 pointwise, but not in measure.

Guideline:

•Just look at characteristic functions.

•If we translate the mass to infinity, pointwise convergence is obtained while the measure
of the non-converging set is preserved.
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