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In this exercise sheet it is useful to review the results in the notes from Chapter 3 (up until
Section 3.4). You will be going through the definition of simple functions up to convergence
theorems and differences between Lebesgue and Riemann integrals.

Exercise 8.1.
In this exercise, we prove the linearity, monotonicity and well-definedness of the integral as
defined for simple functions, see Def. 3.1.2 and Def. 3.1.3 in the lecture notes. These results
are essential to derive the corresponding properties of the general integral.

(a) Let f, g be two µ-measurable simple functions with values {an}n∈N and {bn}n∈N in R, see
Def. 3.1.1. in the lecture notes. Show that there exist µ-measurable, disjoint sets (An)n∈N,
(Bn)n∈N, such that:

f =
∑
n

an · χAn , g =
∑
n

bn · χBn ,

and prove that the sets and values can be chosen in such a way that An = Bn holds for all
n ∈ N.

Guideline: Consider the sets f−1({an}) and g−1({bn}). Once you can write down An and
Bn, what can you say about the pairwise intersections?

(b) Show that if f =
∑

n an · χAn where {an} ⊂ R is a sequence of values (not necessarily
different from each other) and {An} a sequence of pairwise disjoint, µ-measurable subsets.
Prove: ∫

fdµ =
∑
n

anµ(An).

Guideline: Use Definition 3.1.2/3.1.3.

(c) Let f, g be µ-measurable simple functions such that f ≤ g pointwise. It then holds:∫
fdµ ≤

∫
gdµ

Guideline: By (a) you can assume that you have a decomposition such that An = Bn

where f =
∑

n an · χAn , g =
∑

n bn · χBn .

(d) Assume f, g are µ-measurable simple functions and a, b ∈ R. Show that af + bg is a
µ-measurable simple function and:∫

af + bgdµ = a ·
∫
fdµ+ b ·

∫
gdµ.
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Guideline: Same hint as for (c).

(e) Let f be a µ-measurable simple function. Prove:∫
fdµ =

∫
fdµ =

∫
fdµ,

where the last integral is understood in the sense of integrals for simple functions, see Def
3.1.2/3.1.3 in the lecture notes.

.

Exercise 8.2.
Proof the following Theorem: Let f : Ω→ R be a µ-summable function and∣∣ ∫

Ω

f dµ
∣∣ =

∫
Ω

|f | dµ .

Then either f ≥ 0 or f ≤ 0 almost everywhere on Ω.

Guideline: When having f map into R, it is sometimes useful to split f into f+ =
max{f, 0} and f− = max{−f, 0}.

Exercise 8.3.
Let f : ]0, 1[→ R be summable. Show that xkf ist summable as well for all k ∈ N and

lim
k→∞

∫ 1

0

xkf(x) dx = 0 .

Guideline: Use the fact that xk ≤ 1 and you want to be able to apply DCT for xkf(x).
Thus, it can be useful to consider the hint in the above question in order to get an integrable
majorant.

Exercise 8.4.
Find an example of a continuous, bounded function f : [0,∞[→ R with the asymptotic
property limx→∞ f(x) = 0, such that∫ ∞

0

|f(x)|pdx =∞ ,
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for all p > 0.

Guideline: We need a bit of real analysis for this question. e−x satisfies the first property,
however the integral will be finite for all p > 0. So, this function provides too much decay.
Another way of saying this is that ex has exponential growth. One can test 1/(1 + x) but
again it gives too much decay (for any p >= 2 the integral is finite). Is there any function
of the form f(x) = 1/Pr(x), for Pr(x) = (1 + x)r, that satisfies the required properties? If
not, which function has less growth than any Pr(x)?

Exercise 8.5.

(a) Let {fk}k∈N be a sequence of functions on a measurable set Ω ⊂ Rn. Show that the series∑∞
k=1 fk(x) converges almost everywhere, if

∞∑
k=1

∫
Ω

|fk|dx <∞ .

Guideline: Monotone convergence.

(b) Let {rk} be an ordering of Q ∩ [0, 1]; (ak)k∈N ⊂ R, such that
∑∞

k=1 ak is absolute con-
vergent. Show that then

∑∞
k=1 ak|x−rk|−1/2 is absolute convergent for almost every x ∈ [0, 1].

Guideline: Define fk(x) = ak|x− rk|−1/2 and use (a).

Exercise 8.6.
Find an example of a function which is not Lebesgue-summable, such that its improper
Riemann integral exists and is finite.

Guideline: Either provide a ”well known function”, or build example. If you want to build
an example, consider the following questions: Which series do you know that converge but
do not absolutely converge? How do you relate this to constructing simple functions?

An interesting question which you should ask yourselves is why does there exists such an
example in view of Proposition 3.2.2. The critical point is that in Proposition 3.2.2 f is a
bounded function defined on a compact domain.
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