Topology with many open Sets

Gabriel Dettling

FS 2020

Let $X=\{1, \ldots, n\}$, and let \mathcal{O} be a topology on X with $|\mathcal{O}|>\frac{3}{4} 2^{n}$. For any $i, j \in X$ with $i \neq j$, consider the set

$$
\mathcal{S}_{i j}:=\{A \subseteq X \mid i \in A, j \notin A\}
$$

and note that $\left|\mathcal{S}_{i j}\right|=\frac{1}{4} 2^{n}$. If we had $\mathcal{S}_{i j} \cap \mathcal{O}=\emptyset$, that would imply

$$
|\mathcal{P}(X)| \geq|\mathcal{O}|+\left|\mathcal{S}_{i j}\right|>2^{n}
$$

which is a contradiction to $|\mathcal{P}(X)|=2^{n}$.
Therefore we can pick $\Omega_{i j} \in\left(\mathcal{S}_{i j} \cap \mathcal{O}\right)$ for all $i \neq j$. For any $i \in X$, we have

$$
\bigcap_{\substack{j=1 \\ j \neq i}}^{n} \Omega_{i j}=\{i\} \in \mathcal{O}
$$

(finite intersection of open sets is open). As every (nonempty) subset A of X can be written as $A=\bigcup_{i \in A}\{i\}$, it follows that \mathcal{O} is the discrete topology.

This shows that there can be no topology \mathcal{O}^{\prime} on X with $\frac{3}{4} 2^{n}<\left|\mathcal{O}^{\prime}\right|<2^{n}$.

