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4. Compactness

Chef’s table

Starting this week, based on some requests I have received, I would like to add a few
comments about the problem set, so to guide those among you who wish to focus on
just five or six of them. As a general remark, even if you decide to write down accurate
solutions only to a certain subset of exercises, it may be a great idea to take some time to
think about all of them (with the exception of the challenge problem, if you have time
constraints). Meditating on a problem without a piece of paper and a pen in front you is
very good (and helpful) practice, which reinforces your abstraction skills and gets you
closer to a research-type experience. It may be difficult at first, but you should give it a
try.

That said, I envision two types of tasting menus. A lighter option might be 4.1 - 4.2 - 4.3
- 4.4 - 4.5 - 4.6: these exercises are all pretty short, but they provide a good training. In
particular, Problem 4.5 is very instructive. A more demanding option could be 4.5 - 4.7 -
4.8 - 4.9: the combination of 4.8 and 4.9 provides a complete proof for a (very important!)
characterisation of compact sets in Euclidean spaces, and the statement should be known
to all students in the class. Overall, this couple of problems is rather lengthy to be written
down in detail, but provides an excellent practice both from the technical viewpoint and
from a writing in the Major perspective. Finally, let me note that Problem 4.6 is a very
basic but helpful result in Real Analysis: for instance, it makes it much simpler to prove
that the set of limit points of the sequence an = sin(n) coincides with the closed interval
[−1, 1], which would be a lot harder to prove with purely elementary tools.

4.1. Discrete topology L. Let X be a set equipped with the discrete topology.
Characterize the compact subspaces of X.

4.2. Finite intersection property L.We say that a familyA of subsets of a topological
space X has the finite intersection property if for each (non-empty) finite subfamily F of
A we have that ⋂

A∈F
A 6= ∅.

Show that a topological space X is compact if and only if, for every family of closed
subsets A that has the finite intersection property, we have that⋂

A∈A
A 6= ∅.

4.3. Intersection of compact sets L. Let X be a compact topological space, O be
an open subset of X an {Ci}i∈I be a (possibly infinite) family of closed sets such that⋂

i∈I

Ci ⊆ O.
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Show that it is possible to find a finite set of indices {i1, . . . , in} ⊆ I such that
n⋂

k=1
Cik
⊆ O.

4.4. Finite number of digits 3. Given a topological space X, let X ′ be the subspace
of X obtained by removing all the isolated points of X, i.e. all the points of X which are
open and closed in X. Let Bn be the subspace of [0, 1] that consists of all the numbers
having a base 2 decimal expansion 0.a1a2a3 . . . in which at most n of the digits ai are 1,
and let B := ∪n∈NBn. Determine B′ and B′n for every n ∈ N. Deduce that there for each
n ∈ N there is a space X such that the sequence

X ⊇ X ′ ⊇ X ′′ ⊇ . . .

becomes the empty set after exactly n stages.

4.5. The cofinite topology L. Let T be the family of subsets of the real line R defined
as

T := ∅ ∪ {R \ F : F ⊂ R is finite}.

(i) Check that T is a topology and that (R, T ) is compact.

(ii) Let Tstd be the standard topology on R. Show that (R, T ) and (R, Tstd) are not
homeomorphic.

4.6. Limit points of a sequence 3. Let {xn}n∈N ⊆ R be a sequence of points in R.
We say that y ∈ R is a limit point for this sequence if there exists a subsequence {xnk

}k∈N
of {xn}n∈N that converges to y. Prove that the set of the limit points of any sequence in
R is closed.

4.7. Neighborhood of a set 3. Let C be a closed subset of Rn and let A be an open
subset of Rn that contains C. For every ε > 0, define Cε := {x ∈ Rn : d(x, C) < ε}.
Prove that, if C is compact, then there exists ε > 0 such that Cε ⊆ A. Is the conclusion
true removing the hypothesis of C being compact?

Note: Given any x ∈ Rn and S ⊆ Rn, the distance of x to S is defined as d(x, S) :=
infs∈S|x− s|.

4.8. Preparation to Problem 4.9 3. Before facing Problem 4.9, we need the following
preliminary facts.

(i) Let (X, d) be a metric space and assume that X is separable, which means that X
contains a countable dense subset. Prove that any open cover O of X admits a
countable subcover.
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(ii) Let (X, d) be a complete metric space. Then a subset Y ⊆ X is closed if and only if
it is complete. Observe that this applies in particular to X = Rn with the Euclidean
distance.

(iii) Prove that a subset of Rn is totally bounded if and only if it is bounded. Show that
this is not true in general in a complete metric space (X, d).

4.9. Equivalent notions of compactness 3. Given a metric space (X, d), show that
the following conditions are equivalent:

(C1) The space X is compact (i.e. every open cover of X admits a finite subcover).

(C2) The space X is sequentially compact (i.e. every sequence {xn}n∈N ⊆ X admits a
converging subsequence).

(C3) The space X is complete (i.e. every Cauchy sequence {xn}n∈N converges to some
x ∈ X) and totally bounded (i.e. for every ε > 0 there exists a finite set of points
x1, . . . , xk ∈ X such that X ⊆ ∪k

i=1B(xi, ε)).

Note: Observe that, thanks to (ii) and (iii) in Problem 4.8, this statement is equivalent
to the analogous one seen in class in the case when (X, d) is a subspace of a Euclidean
space.

4.10. Union of strictly convex compact sets m. Prove that it is not possible
to obtain Rn as a countable union of strictly convex compact sets that are pairwise
disjoint.
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4. Solutions

Solution of 4.1: We want to prove that a subspace A ⊆ X is compact if and only if
is finite. Obviously every finite subset of X is compact, hence let us prove the other
implication. Consider an infinite subspace A ⊆ X. Then {x} is open in A for every
x ∈ A, since A inherits the discrete topology from X. Therefore O := {{x} : x ∈ A} is
an infinite open covering of A. However, patently, O does not admit any finite subcover,
which proves that A is not compact.

Solution of 4.2: Assume that X is compact, and suppose that there exists a family A
of closed subsets of X such that the intersection of all the elements of A is empty, but
any finite subcollection of A has non-empty intersection (i.e. A has the finite intersection
property). For a set A ⊆ X, we denote by Ac the complement of A, that is Ac := X \ A.
Since the intersection of all the elements A ∈ A is empty, we have that⋃

A∈A
Ac = X.

In particular, Ac = {Ac : A ∈ A} is an open cover of X. Thus, there exists a finite
subfamily of Ac that still covers X, which means that there exists a finite subfamily F of
A such that {Ac : A ∈ F} covers X. However, this implies that⋂

A∈F
A = ∅,

which is a contradiction.

On the other hand, assume that X is not compact. Then there exists an infinite family of
open sets B that covers X such that for every finite subfamily G of B, the union of the
elements of G does not cover X. Using the same argument as above, we see that A := Bc

has the finite intersection property, but the intersection of all its elements is the empty
set, which proves the other implication.

Solution of 4.3: Note that Oc = X \ O is a closed subset of X, thus it is compact.
Moreover the family {Cc

i }i∈I is an open cover of Oc, and thus there exists a finite subfamily
F = {Cc

i1 , . . . , Cc
in
} that covers Oc. In particular,

n⋃
k=1

Cc
ik
⊇ Oc =⇒

n⋂
k=1

Cik
⊆ O.

Solution of 4.4: We start by proving that, for every x ∈ Bn−1 with n ≥ 0, there
exists a sequence {xk}k>0 ⊆ Bn \ {x} that converges to x. By definition, there exist
0 < i1 < · · · < im, with m ≤ n− 1, such that x = 2−i1 + . . . + 2−im . Then, for all k > 0,
define

xk := x + 2−(im+k) = 2−i1 + . . . + 2−im + 2−(im+k).
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Observe that the base 2 decimal representation of xk has exactly one 1 more than x,
therefore xk ∈ Bn for all k > 0. Moreover |x − xk| = 2−(im+k) → 0, which proves that
{xk}k>0 converges to x as we wanted.

As a result, the set B = ∪n∈NBn does not have isolated points, and thus B′ = B. We
now want to show that B′n = Bn−1. We have already proved that any point of Bn−1
is not isolated in Bn, therefore Bn−1 ⊆ B′n. Therefore we just need to show that every
x ∈ Bn \ Bn−1 is isolated in Bn. Write x = 2−i1 + . . . + 2−in with 0 < i1 < . . . < in as
before and consider y ∈ Bn \ {x}. Since y 6= x and y has at most n digits in its base
2 representation, there exists k = 1, . . . , n such that y does not have the ikth digit in
its base 2 representation. Hence, we obtain that |x− y| ≥ 2−in , which proves that x is
isolated in Bn.

Solution of 4.5:

(i) Let us check that T is a topology:

• ∅ and R are trivially contained in T .

• If R \ F1 and R \ F2 are contained in T (i.e. F1 and F2 are finite), then their
intersection (R \ F1) ∩ (R \ F2) = R \ (F1 ∪ F2) is contained in T since F1 ∪ F2 is
finite. Thus T is closed under finite intersections.

• If {R \ Fi}i∈I is a family of sets in T , then their union ⋃
i∈I(R \ Fi) = R \ ∩i∈IFi is

contained in F , since the intersection of (arbitrarily many) finite sets is finite. Hence
we have that T is closed under union.

Let us now prove that (R, T ) is compact. Consider an open cover O = {R \ Fi}i∈I of R.
This means that ⋃

i∈I(R\Fi) = R, or equivalently ⋂
i∈I Fi = ∅. Consider F1 = {x1, . . . , xn}.

Then, for all k = 1, . . . , n, there exists ik ∈ I such that xk 6∈ Fik
, since the intersection of all

Fi’s is empty. Therefore ⋂n
k=1 Fik

∩F1 = ∅, which prove that O′ := {R\F1}∪{R\Fik
}n

k=1
is finite subcover of O.

(ii) The two topological spaces are not homeomorphic since (R, Tstd) is not compact. To
prove this, consider the following open cover of R with respect to Tstd: for each m ∈ Z,
let Om = (m− 1, m + 1), and let O = {Om : m ∈ Z}. Observe that the only element of
O that contains an integer m ∈ Z is Om. Therefore, removing any element from O, we do
not have a cover anymore. This shows that (R, Tstd) is not compact as we wanted.

Solution of 4.6: Consider the set L of limit points of a sequence {xn}n∈N and let x̄ ∈ L.
By the definition of closure, for every open set U ⊆ R that contains x̄, we can find
y ∈ L ∩ U . In particular, for every k ∈ N, there exists yk ∈ L ∩ (x̄− 1/k, x̄ + 1/k). Since
yk is a limit point for the sequence and (x̄− 1/k, x̄ + 1/k) is an open neighborhood of yk,
then there exists nk ∈ N such that xnk

∈ (x̄−1/k, x̄ + 1/k). Observe that the subsequence
{xnk
}k∈N of {xn}n∈N converges to x̄ as k →∞ (it is not difficult to see that we can also
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choose nk non-decreasing in k ∈ N). This means that x̄ is a limit point for the sequence
and thus x̄ ∈ L, which concludes the proof that L = L.

Solution of 4.7: Consider the continuous function f : C → [0,∞) defined as f(x) :=
d(x,Rn \ A) (check the continuity!). Assume that f(x) = 0 for some x ∈ C, then there
exists a sequence {xk}k∈N ⊆ Rn \ A such that |x − xk| → 0. However, since Rn \ A is
closed, this implies that x ∈ Rn \A, which contradicts the fact that x ∈ C ⊆ A. Therefore
f(x) > 0 for every x ∈ C.

Now observe that f is a continuous function defined on a compact set C, hence there
exists a point x0 ∈ C that achieves the minimum of f , namely f(x0) = infx∈C f(x). We
want to prove that Cε ⊆ A for ε := f(x0). By definition of Cε, this is equivalent to proving
that d(y, C) ≥ ε for every y ∈ Rn \ A. However, this follows directly from the fact that
ε = f(x0) = infx∈C d(x,Rn \ A) = infx∈C infy∈Rn\A|x− y| = infy∈Rn\A d(y, C).

Finally, we want to prove that, if C is not compact, then the result does not hold. Let us
define the closed set C := {(x, 1/x) ∈ R2 : x > 0} and consider A := {x, y ∈ R2 : y > 0},
which is an open set containing C. Given any ε > 0, note that |(2/ε, 0)− (2/ε, ε/2)| < ε;
hence (2/ε, 0) ∈ Cε, but (2/ε, 0) 6∈ A, which proves that Cε 6⊆ A.

Solution of 4.8:

(i) First observe that X admits a countable basis for the topology generated by the metric
d. Indeed, denoting by D a countable dense subset of X, the countable set

B := {B(x, q) : x ∈ D, q ∈ Q>0}

is a basis for the topology of metric space on X. Indeed consider any open set U ⊆ X and
any point x0 ∈ U . By definition of metric topology, there exists y ∈ U and r > 0 such that
x0 ∈ B(y, r) ⊆ U . Then observe that B(x0, r′) ⊆ B(y, r) ⊆ U with r′ := r − d(x0, y) > 0,
by the triangle inequality. Since D is dense, there exists x ∈ D ∩ B(x0, r′/2), therefore
we have that x0 ∈ B(x, r′/2) ⊆ B(x0, r′) ⊆ U , again by triangle inequality. Now take
q ∈ Q>0 such that d(x0, x) < q < r′/2 (which is possible since d(x0, x) < r′/2), then
x0 ∈ B(x, q) ⊆ B(x, r′/2) ⊆ U . Note that B(x, q) ∈ B, thus we proved that B is a basis
for the topology.

Note: Here we proved that any separable metric space is second-countable (see Problem
set 5 for the definition). However, this is not true in general. In fact there exist separable
first-countable topological spaces (see again Problem set 5 for the definition) that are not
second-countable.

Now we want to prove that, if a topological space X has a countable basis for its topology,
then every open cover admits a countable subcover. Denote by B = {Bn}n∈N a countable
basis of the topology and consider an open cover O. Define I ⊂ N as the set of indices
n ∈ N such that there exists On ∈ O containing Bn. Then define O′ := {On : n ∈ I},
where for every n ∈ I we make a choice of On ∈ O such that Bn ⊆ On. We claim that O′
is a countable subcover of O. The fact that O′ is countable is obvious, hence let us prove
that it is a cover. Consider x ∈ X, then there exists O ∈ O such that x ∈ O. Since B is a
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basis for the topology, we can pick Bn ∈ B such that x ∈ Bn ⊆ O. In particular n ∈ I,
hence x ∈ Bn ⊆ On for some On ∈ O′, which proves that O′ is a cover.

(ii) First assume that Y ⊆ X is closed and consider a Cauchy sequence {xn}n∈N ⊆ Y ,
which converges to some point x ∈ X by completeness of X. Hence, since Y is closed and
xn ∈ Y for every n ∈ N, x is contained in Y too, which proves that Y is complete.

Viceversa, assume that Y ⊆ X is complete and consider a sequence {xn}n∈N ⊆ Y
converging to some point x ∈ X. Then, for every ε > 0 there exists N ∈ N such that
d(xn, x) ≤ ε/2 for every n ≥ N . As a result we obtain that d(xn, xm) ≤ d(xn, x) +
d(xm, x) ≤ ε for every n, m ≥ N , which proves that {xn}n∈N is a Cauchy sequence.
Therefore this sequence converges to some point y ∈ Y by completeness of Y . However,
notice that y must coincide with x since the limit of a sequence in a metric space is unique.
Hence we have shown that x ∈ Y , so Y is closed.

(iii) Consider a subset Y of Rn. Obviously if Y is totally bounded then it is bounded.
Indeed, there exist x1, . . . , xk ⊆ Y such that Y ⊆ ∪k

i=1B(xi, 1). Therefore for every
x, y ∈ Y we have that |x− y| ≤ 2 + maxi,j=1...,k|xi − xj| <∞.

For the other implication, first observe that a subset Y of a totally bounded space
(X, d) is totally bounded. Indeed, given any ε > 0, there exist x1, . . . , xk ∈ X such that
X ⊆ ∪k

i=1B(xi, ε/2). Then, for every i = 1, . . . , k, choose yi ∈ Y ∩B(xi, ε/2) (if it exists,
otherwise we just ignore the index). We claim that Y ⊆ ∪k

i=1B(yi, ε). This follows from
the fact that B(xi, ε/2) ⊆ B(yi, ε) (you can check it, using the triangle inequality).

Given this preliminary fact, we can now prove easily that if Y ⊆ Rn is bounded then it is
totally bounded. Indeed, by boundedness of Y , there exists R > 0 such that Y ⊆ [−R, R]n
and we will now show that [−R, R]n ⊆ Rn is totally bounded. Taken any ε > 0, we cover
[−R, R]n with a finite number of cubes C1, . . . , Ck with edges of length less that 2ε/

√
n

(this is easily obtained by covering the interval [−R, R] with a finite number of intervals
of length less than 2ε/

√
n and then considering the “product cover”). Then denote by

x1, . . . , xk the center of the cubes and observe that Ci ⊆ B(xi, ε) for every i = 1, . . . , k,
since the diameter of Ci is

√
n · 2ε/

√
n. Therefore [−R, R]n ⊆ ∪k

i=1Ci ⊆ ∪k
i=1B(xi, ε),

which proves the total boundedness of [−R, R]n by arbitrariness of ε > 0.

Solution of 4.9: We will prove that (C1) is equivalent to (C2), which is in turn equivalent
to (C3).

(C1) =⇒ (C2) Assume by contradiction that X is compact but not sequentially compact.
In particular there exists a sequence {xn}n∈N without converging subsequences. Then
define

O := {O ⊆ X : O open, O contains a finite number of elements in {xn}n∈N}.

Observe that O is an open cover of X. Indeed, for every x ∈ X, there exists an open
neighborhood O of x that does not contain elements of {xn}n∈N eventually in n ∈ N.
Otherwise x would be an accumulation point for {xn}n∈N and thus it would exists a
subsequence of {xn}n∈N converging to x, since any metric space is first countable (this
is the only step in this implication where we use the hypothesis of metric space and in
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fact first countable would be sufficient). Hence, by compactness of X, there exists a finite
subcover O′ of O. Since O′ is a finite cover of X and {xn}n∈N is an infinite sequence,
there exists O′ ∈ O′ that contains an infinite number of elements of {xn}n∈N. However,
this contradicts the fact that O′ ∈ O′ ⊆ O.

(C2) =⇒ (C1) Let us assume that X is sequentially compact, we want to prove that it is
compact. We first show that X is separable. First observe that X is bounded, otherwise
it is easy to construct a sequence without converging subsequences (“going to infinity”).
We construct the following sequence: we fix some x0 ∈ X and then we define xn+1 for
n ≥ 0 in such a way that

min
i=1,...,n

d(xn+1, xi) ≥
1
2 sup

x∈X
min

i=1,...,n
d(x, xi). (1)

Observe that the term on the right hand side is finite by boundedness of X, thus it is
possible to find xn+1 as required. We want to show that {xn}n∈N is a dense subset of X.
Since X is sequentially compact, {xn}n∈N admits a converging subsequence {xnm}m∈N.
This implies that mini=1,...,nm−1 d(xnm , xi) ≤ d(xnm , xnm−1) converges to 0 as m→∞. As
a result supx∈X mini=1,...,nm d(x, xi)→ 0 as m→∞, by (1). However, from this it follows
directly that

sup
x∈X

min
i=1,...,n

d(x, xi)→ 0 as n→∞,

which proves that {xn}n∈N is a (countable) dense subset of X.

Now consider an open cover O of X. Since X is separable, we can extract a countable
subcover O′ = {Ok}k∈N of O by (i) in Problem 4.8. Assume by contradiction that O′ does
not admit any finite subcover, then ∪n

k=1Ok 6= X for any n ∈ N. In particular there exists
xn ∈ X \ ∪n

k=1Ok for any n ∈ N. Since X is sequentially compact, the sequence {xn}n∈N
has a subsequence converging to some point x ∈ X. However observe that x ∈ X \∪n

k=1Ok

for all n ∈ N, since the sequence {xn}n∈N is eventually contained in X \ ∪n
k=1Ok, which is

closed. Therefore, x ∈ X \ ∪n∈NOn, which is a contradiction since X \ ∪n∈NOn = ∅.

(C2) =⇒ (C3) Let us assume that X is sequentially compact. Given a Cauchy sequence
{xn}n∈N, there exists a subsequence converging to some x ∈ X. However, it is not difficult
to check (do it!) that if a subsequence of a Cauchy sequence converges to some point
x ∈ X, then the whole sequence converges to such a point. Therefore X is complete The
proof that X is totally bounded is analogous to the proof X is separable in the previous
implication ((C2) =⇒ (C1)), hence we leave it for the reader.

(C3) =⇒ (C2) Let us assume that X is complete and totally bounded and consider a
sequence {xn}n∈N. We want to prove that this sequence admits a converging subsequence.
Since X is totally bounded, for every m ∈ N there exists a finite cover Om of metric balls
of radius 1/m. Note that there exists a subsequence {x1

n}n∈N of {xn}n∈N such that all
its elements are contained in the same O1 ∈ O1 (this follows from the fact that O1 is a
finite cover of X). Analogously, for every m > 1, we can find a subsequence {xm

n }n∈N of
{xm−1

n }n∈N such that all its elements are contained in the same Om ∈ Om. Finally, with a
diagonal argument, we consider the sequence {xk

k}k∈N (which is a subsequence of {xn}n∈N).
Observe that {xk

k}k∈N is eventually contained in Om ∈ Om for every m ∈ N. Hence in
particular {xk

k}k∈N is a Cauchy sequence, because Om is a metric ball of radius 1/m.
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Therefore {xk
k}k∈N converges to some point x ∈ X by completeness of X. This proves

that {xn}n∈N has a converging subsequence and thus that X is sequentially compact.

Solution of 4.10: m
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