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Part Ia [10 points]

1. Let X be a path-connected topological space and fix x0 ∈ X. Define the
fundamental group π1(X, x0). If x0, x1 ∈ X, what is the relation between π1(X, x0)
and π1(X, x1)?

2. What does it mean to say that a topological space X is semilocally simply
connected? When did we encounter this assumption?

3. Define the Alexandroff one-point compactification of a topological space.
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Part Ib [20 points]

Achtung! Unjustified answers do not give any point!

1. Every topology on a finite set has an even number of open sets.
� True � False

2. If a topological space satisfies the second countability axiom then it satisfies
the first countability axiom as well.

� True � False

3. There exist topologies on the real line that make it compact.
� True � False

4. Let f : X → Y be an open map and let D ⊆ Y be a dense subset of Y . Then
f−1(D) is dense in X.

� True � False
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5. Any continuous map f : S2 → T 2 admits a lift f̃ : S2 → R2 with respect to the
standard projection p : R2 → T 2.

� True � False

6. A quotient map f : X → Y is open if and only if it is a homeomorphism.
� True � False

7. The unit sphere of L2(0, 1), namely

X :=
{
u ∈ L2(0, 1) :

∫ 1

0
u2 = 1

}
,

is separable.
� True � False
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8. There exists a homeomorphism from the Cantor set to a proper subset of the
Cantor set.

� True � False

9. Consider the collection C of the ten topological spaces, given by

0 1 2 3 4 5 6 7 8 9
each of them being regarded as a subspace of R2. Let ' denote the homotopical
equivalence in C. Then C/' contains exactly 5 elements.

� True � False

10. In the setting of the previous question, let now ∼= denote homeomorphic
equivalence in C. Then C/∼= contains exactly 7 elements.

� True � False
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Part IIa [20 points]
The Sorgenfrey line RSf is the topological space obtain from R equipped with the
topology generated by the basis

B := {[a, b) : a, b ∈ R}.

(i) Check that B is indeed a basis of a topology.

(ii) Prove that RSf is first countable.

(iii) Prove that RSf is Hausdorff.

(iv) Prove that RSf is separable.

(v) Prove that A := {(x, y) ∈ RSf × RSf : x+ y = 0} is discrete in RSf × RSf ,
in the sense that for all (x, y) ∈ RSf ×RSf there exists an open neighborhood
U ⊆ RSf × RSf of (x, y) such that (U \ {(x, y)}) ∩ A = ∅.

(vi) Prove that RSf is not second countable.

(vii) Prove that RSf is not metrisable.
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Part IIb [20 points]
For p ≥ 2, set ωp = e2πi/p (so that ωp is a p-th root of unity in C). Consider the
equivalence relation on S3 ⊂ C2 given by

(z, w) ∼ (z′, w′) if and only if

(z, w) = (z′, w′)
or z = ωkpz

′ and w = ωkpw
′ for some k ∈ Z,

and consider the topological spaceXp := S3/∼, endowed with the quotient topology;
let π : S3 → Xp be the corresponding projection.

(i) Prove that π is actually a covering map, and determine its degree.

(ii) Prove that Xp is a path-connected topological manifold.

(iii) Compute the fundamental group of Xp.

Let us now define the topological space Y := S3 \ (S1 × {0}), obtain as S3 minus
a circle. Consider on Y the same equivalence relation ∼ as above and define
Yp := Y/∼.

(iv) Compute the fundamental group of Yp.
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