Plan:
- Common mistakes / confusions on §58
- Reminders on covering maps
- §58, 9.3, 9.4
- 9.7 + discrete subsets
- Challenge problem

Common mistakes / confusions on §58

1. Difference between free homotopy and based homotopy.

2. $f, g : X \rightarrow Y$ are homotopic if $\exists H : X \times I \rightarrow Y$ s.t.

 $H(-, 0) = f$, \hspace{1cm} $H(-, 1) = g$.

3. Two paths $y, f : I \rightarrow X$ are (freely) homotopic if

 $\exists H : I \times I \rightarrow X$ s.t. $H(-, 0) = y$, \hspace{0.5cm} $H(-, 1) = f$.

 and $y, f : I \rightarrow X$ s.t. $y(0) = f(0)$, \hspace{0.5cm} $y(1) = f(1)$.

 They are homotopic as paths / homotopic relative to their endpoints.

 if $\exists H : I \times I \rightarrow X$ s.t. 1) $H(-, 0) = y$, \hspace{0.5cm} $H(-, 1) = f$

 2) $H(0, -) = y$, \hspace{0.5cm} $H(1, -) = f$.

 $H(t, 0) = y(t)$, \hspace{0.5cm} $H(t, 1) = f(t)$.
EX:

Then γ is freely homotopic to δ
(both homotopic to $c : I \to S^1$)

but not homotopic rel. to their endpoints.

Indeed $\gamma \simeq \delta \Rightarrow \left[\gamma \ast \delta^{-1} \right] = \text{id} \in \pi_1(S^1)$

However $\gamma \ast \delta^{-1}$ is a generator of $\pi_1(S^1) \cong \mathbb{Z}$.

(2) Homotopy of constant maps

Suggestion: When talking about a constant map $X \to Y: x \mapsto y_0$,

Write C_{y_0}, not y_0.

I have seen the following mistakes: $f : X \to Y$

$$f(x) = g(x) \quad \forall x \quad \Rightarrow \quad f = g$$

In a path-connected space Y, all constant maps $X \to Y$ are homotopic.

$\gamma \neq \gamma_0$ but δ' is path-connected, so $\gamma \simeq \delta$.
Reminder on covering maps

Def. $U \subseteq X$ is evenly covered if $p^{-1}(U) = \bigcup_{i \in I} V_i$ s.t.

$p|_{V_i} : V_i \rightarrow U$ is a homeo.

Remark: If $U \subseteq X$ is evenly covered, and $V \subseteq U$, then V is also evenly covered.

$p^{-1}(V) = p^{-1}(U) \cap p^{-1}(V) = \bigcup_{i \in I} (p^{-1}(V) \cap V_i)$

$p : V_i \rightarrow U$ is a homeo \Rightarrow $p : V_i \cap p^{-1}(V) \rightarrow V$ is also a homeo.

Def: $p : \tilde{X} \rightarrow X$ is a covering map if any $x \in X$ has an evenly covered nbh.

$p^{-1}(x) \subseteq \tilde{X}$ is the fiber of x. $\# p^{-1}(x)$ is the degree of p at x.

Def: $f : Y \rightarrow Z$ is a local homeo if $\forall y \in Y \exists U \ni y$ open s.t. $f : U \rightarrow V$ is a homeo.
Lemma (lecture 18): \(X \) is connected, \(p: X \rightarrow X \) cont.

(i) If \(p \) is a covering map, then it is a local homeo and the degree of \(p \) is constant.

(ii) If \(p \) is a local homeo and \(p^{-1}(x) \) is finite \(\forall x \), then \(p \) is a covering map.

First exercises

9.3: \(p: \mathbb{C}^* \rightarrow \mathbb{C}^*: z \mapsto z^n \). This is a covering map of degree \(n \).

Proof: \(\forall z \in \mathbb{C}^* \), \(\# p^{-1}(z) = n \). \(\sum_{k=0}^{n-1} z^k = 0 \iff n \neq 0 \) \iff \(z \neq 0 \), exactly \(n \) distinct roots \(z \neq 0 \).

By lemma (2), left to show: \(p \) is a local homeo.

\(p: \mathbb{C}^* \rightarrow \mathbb{C}^*: z \mapsto z^n \) is holomorphic, \(p^{-1}(z) = n z^{-n-1} \neq 0 \forall z \neq 0 \).

Inverse function theorem: \(p \) has a local holomorphic inverse \(\iff p \) is a local homeo.

9.4: \(p: X \rightarrow X \) cont.

(i) \(p \) is a covering map \(\iff \) \(\exists \) an open cover of \(X \) by ev. cov. sets.

(ii) \(p \) is a covering map \(\iff \exists \) a basis of \(X \) by ev. cov. sets.
(iii) \(p\) is a covering map \(\iff\) \(\exists \) a basis of \(X\) by ev. cov. sets.

By definition,

(iii) \(\Rightarrow\) A basis is an open cover.

\(\Rightarrow\) \(\exists B = \{\text{evenly covered open sets} \subseteq X \mid \text{is a basis}\}

\(\bigcup_{b \in B} b = X \) by (ii).

\(b_i, b_j \in B, b_i \cap b_j \text{ is open and evenly covered} (\subseteq B_i)\)

\(\Rightarrow c \in B.\)

Let \(\tilde{B}\) be as above.

\(\tilde{X} \xrightarrow{p} X\)

\(p(\tilde{u}) = p(\tilde{u}) \cap \left(\bigcup_{b \in B} b \right) = \tilde{u} \xrightarrow{\text{to show: this is open}} p(\tilde{u})\)

\(\bigcup_{b \in B} p(\tilde{u}) \cap b\)

But \(\tilde{u} \cap V_i \subseteq V_i \text{ is open, } p(V_i \text{ is a homeo} \Rightarrow p(\tilde{u} \cap V_i) \text{ is open.}\)

\text{Discrete subsets, ex. 9.7}
Def: \(X \) any top. space, \(A \subseteq X \) is a **discrete subset** if
\[\forall x \in X \exists U \ni x \text{ s.t. } U \cap A = \emptyset \]

In other words:
\[
(a) \forall x \in A \exists U_x : U \cap A = \emptyset \\
(b) \forall x \notin A \exists U_x : U \cap A = \emptyset
\]

(a) \(\Rightarrow \) \(A \) is a discrete topological space w/ subspace top.

\[
(\text{a}) \Rightarrow \text{\(\emptyset \times I \) is open in \((A, J_A)\) \(\forall x \in A \Rightarrow (A, J_A) \) is discrete.}
\]

(b) \(\Leftarrow \) \(A \) is closed in \(X \).

\[
(\text{b}) \Leftarrow \text{\(\forall x \notin A \exists U_x : x \in U \subseteq X \setminus A \Rightarrow X \setminus A \) is open.}
\]

EX: \(\triangle \)

\(A = \{ \frac{1}{n} : n \geq 1 \} \)

\(\Rightarrow \) \(A \) satisfies (\(a \)) \text{ but}

\(A \) does not satisfy (\(b \))!

COR: A discrete subset of a compact space \(X \) is finite.

Pt. \(A \subseteq X \) discrete, \(A \) is closed (\(b \)), so \((A, J_A)\) is compact.

Also \((A, J_A)\) is discrete (\(a \)), so \(A \) is finite.

Ex 9.7: \(p : \tilde{X} \to X \) covering map, \(X \) Hausdorff. Then \(\forall x \in X \)

\[p^{-1}(x) \subseteq \tilde{X} \text{ is a discrete subset. In particular, } \tilde{X} \text{ compact } \Rightarrow p^{-1}(x) \text{ finite.} \]
Example: \(p \colon X \to \bar{X} \) covering map, \(X \) Hausdorff, then \(\forall x \in X \), \(p^{-1}(x) \subseteq \bar{X} \) is a discrete subset. In particular, \(\bar{X} \) compact \(\Rightarrow p^{-1}(x) \) finite.

Proof: (a): \(y \in p^{-1}(x) \). Want: \(\forall y \) s.t. \(\forall \cap p^{-1}(x) = \{ y \} \).

Let \(U \ni x \) open, evenly covered. \(p^{-1}(U) = \bigsqcup_{i=1}^{n} V_i \). \(p \colon V_i \to \bar{U} \) is a homeo \(\Rightarrow \exists ! i_0 \in I \) s.t. \(y \in V_{i_0} \) open.

\(V_{i_0} \cap p^{-1}(x) = \{ y \} \) \(\forall \) \(\in \) \(p \) cont.

(b): \(X \) is Hausdorff \(\Rightarrow \exists ! x \) is closed \(\Rightarrow \forall \cap p^{-1}(x) \) is closed.

Challenge problem

\(Y = \{ x^2 + y^2 = 1 \} \)

\(L = \{ x = y = 0 \} \)

Q: Show that \(\mathbb{R}^3 \setminus Y \neq \mathbb{R}^3 \setminus (Y \cup L) \)

Idea: show that \(\sigma_1, \sigma_2 \) are different

1. \(\mathbb{R}^3 \setminus L \)

 - Contract everything to an \(\infty \) cylinder.

 \(\mathbb{R}^3 \setminus L = \{ (\theta, r, z) : r > 0 \} \)
\[\mathbb{R}^3 \setminus \mathcal{L} = \{ (0, r, z) : r > 0 \} \]

under cylindrical coordinates

The retraction is \((0, r, z) \to (0, 1, z) \)

Def: \(A \subset X \) is a deformation retract of \(X \) if \(\exists H : X \times I \to X \)

\[H(-, 0) = \text{id}_X, \quad H(x, 1) \in A, \quad H(x, t) = a \quad \forall x \in A. \]

Note: \(A \) and \(X \) are homotopic.

\[A \subset \xrightarrow{\text{homotopy}} X \]

\[H(\cdot, 1) \]

\[H: \mathbb{R}^3 \setminus \mathcal{L} \times I \to \mathbb{R}^3 \setminus \mathcal{L} \]

is a def. rem. onto \(\mathcal{C} \)

\[H((0, r, z), t) = (0, r(t-t) + t, z). \]

\[\mathbb{R}^3 \setminus \mathcal{L} \cong C \cong S^1 \times \mathbb{R} \]

\[\pi_1(\mathbb{R}^3 \setminus \mathcal{L}) \cong \pi_1(S^1 \times \mathbb{R}) \cong \pi_1(S^1) \cong \mathbb{Z}. \]

Let \(H \) be an open half-plane \(\in \mathbb{R}^2 \)

\[\mathbb{R}^3 \setminus \mathcal{L} \cong H \times S^1 \]

\[\pi_1(\mathbb{R}^3 \setminus \mathcal{L}) \cong \pi_1(H \times S^1) \cong \mathbb{Z}. \]
① $\mathbb{R}^3 \setminus (L \cup Y)$

- Retract on a torus.

\[\mathbb{R}^3 \setminus (L \cup Y) \cong \mathbb{R}^2 \cong S^1 \times S^1 \]

\[\therefore \quad \pi_1(\mathbb{R}^3 \setminus (L \cup Y)) \cong \mathbb{Z} \times \mathbb{Z} \]

\[\text{Therefore:} \quad \mathbb{R}^3 \setminus (L \cup Y) \neq \mathbb{R}^3 \setminus L. \]

② $\mathbb{R}^3 \setminus X$

$\varphi : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\}$

\[x = r \cdot \nu \mapsto r^{-\nu} \quad \text{where} \quad (r, \nu) \in \mathbb{R}^2 \times S^1 \]

φ (circle touching 0) = (infinite line not touching 0)

\[\therefore \quad \varphi : \mathbb{R}^3 \setminus Y \cong \mathbb{R}^3 \setminus (L \cup \{0\}) \]