Probability and Statistics

Exercise sheet 12

Please ask questions in the exercise classes and/or post your questions (anonymously if you want) in this file: https://docs.google.com/document/d/1FuW9HQponei5ipS4j2J3lM4dfiP7MVQQ_0 cMB1UUAXg/edit?usp=sharing

Exercise 12.1 Suppose that X_1, \ldots, X_n form a random sample from a Poisson distribution for which the mean λ is unknown. Determine the maximum likelihood estimator for λ .

Exercise 12.2 In the year 1910, Rutherford observed the radioactive decay of a substance in n = 2608 time intervals, each of 7.5 seconds. We use almost the same notation as Example 1.6.8 in the lecture notes: \tilde{n}_k is the number of intervals with exactly k decays. We want to match a distribution to these data, and our null hypothesis H_0 is that the number of decays per interval is Poisson-distributed with unknown parameter λ .

Rutherford's experiments resulted in the following table:

[k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	≥ 15
	\tilde{n}_k	57	203	383	525	532	408	273	139	45	27	10	4	0	1	1	0

Table 1: Original table.

In order to fulfil the rule of thumb when a χ^2 asymptotic is an appropriate approximation, we merge the rare cases in the following way:

k	0	1	2	3	4	5	6	7	8	9	10	11	≥ 12
n_k	57	203	383	525	532	408	273	139	45	27	10	4	2

(a) Do a χ^2 test with the given data. (You can use appropriate approximations.)

Hint: Remember what you have learned about χ^2 tests in the lecture. Use Exercise 12.1.

- (b) Do a χ^2 test with the given data for the alternative null hypothesis H'_0 : The number of decays per interval is Poisson-distributed with (exogenously given) parameter $\lambda' = 3.87$.
- (c) Do you think a Poisson distribution is a plausible model? Do you think H'_0 is plausible?

Exercise 12.3 Let X be a normal random variable with $\mathbb{E}[X] = m$ and $\operatorname{Var}[X] = \sigma^2 = 0.0014^2$. Let also X_i for $i = 1, \ldots, n$ be i.i.d. random variables that share the same distribution with X. The following 12 realisations x_i of the random variables X_i were recorded:

 $\begin{array}{c} 1.00781 \ 1.00646 \ 1.00801 \ 1.00833 \ 1.00738 \ 1.00687 \\ 1.00783 \ 1.00936 \ 1.00564 \ 1.00543 \ 1.00794 \ 1.01060 \end{array}$

- (a) Perform a statistical test at a level of confidence $\alpha = 5\%$ for the null hypothesis H_0 : $\mu = 1.0085$ against the alternative hypothesis H_A : $\mu = 1.008$.
- (b) Calculate the power of the test from part (a).

(c) What happens to the power calculated in part (b) when the alternative hypothesis is changed to H'_A : $\mu = 1.007$?

Exercise 12.4 In a study on the reliability of ball-bearings (in German: Kugellager), two samples of 10 pieces each of two different types of ball-bearings were tested. The number of rotations (in millions) until break-down were

type I	3.03	5.53	5.60	9.30	9.92	12.51	12.95	15.21	16.04	16.84
type II	3.19	4.26	4.47	4.53	4.67	4.69	12.78	6.79	9.37	12.75

Before the realization of this study, it was not clear which type was more reliable.

- (a) Are we dealing with a paired sample? Please explain your answer.
- (b) Perform a *t*-test for the null hypothesis "the expected number of rotations until break-down is the same for the two types of ball-bearings" with level 5%. (What are the model assumptions of a *t*-test?)
- (c) Which other test would be a better alternative (fewer model assumptions and usually better power)? You can run that test in R.

Hint: (Clicking the following link will reveal the solution of (c).) You can find the R-code at https://www.kaggle.com/jakobheiss/probstat2020-ex12-4/edit.

If you have feedback regarding the exercise sheets, please send a mail to Jakob Heiss.