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Probability and Statistics

Exercise sheet 11

Exercise 11.1 Suppose that X1, . . . , Xn form a random sample from an absolutely continuous
distribution for which the probability density function fθ(x) under Pθ is given by

fθ(x) =
{
θxθ−1 for 0 < x < 1,
0 otherwise.

Also, suppose that the value of θ > 0 is unknown. Find the MLE (maximum likelihood estimator)
for θ.

Solution 11.1 Let

L(θ;x1, . . . , xn) :=
n∏
i=1

θxθ−1
i = θn

(
n∏
i=1

xi

)θ−1

.

The derivative of logL with respect to θ is

∂

∂θ

(
n log θ + (θ − 1) log

(
n∏
i=1

xi

))
= n

θ
+ log

(
n∏
i=1

xi

)
.

Setting this to 0 for the sample X1, . . . , Xn gives

θ̂ = − n

log (
∏n
i=1Xi)

= − 1(
logX

)
n

,

where
(
logX

)
n

= 1
n

∑n
i=1 logXi is a critical point of L. For θ < θ̂, logL is increasing and for θ > θ̂,

logL is decreasing. Thus θ̂ is the global maximum and is the MLE for θ.

Exercise 11.2 Suppose that X1, . . . , Xn form a random sample from a normal distribution for
which both the mean µ and the variance σ2 > 0 are unknown.

(a) Find the MLE for θ = (µ, σ2).

(b) Find the MLE for θ̃ = (µ, σ).

Solution 11.2 The density of Xi is

fµ,σ2(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

The logarithm of the likelihood function is

logL(µ, σ2;x1, . . . , xn) = −n2 log(2πσ2)−
n∑
i=1

(xi − µ)2

2σ2 .

(a) We look for µ and σ2 which maximize L, which is equivalent to maximizing logL. We compute
the partial derivatives and set them to 0; this gives

∂ logL
∂µ

=
n∑
i=1

Xi − µ
σ2 = 0,
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∂ logL
∂σ2 = − n

2σ2 +
(

n∑
i=1

(Xi − µ)2

2

)
1

(σ2)2 = 0.

So for any σ2, µ 7→ logL(µ, σ2) is maximized for the sample X1, . . . , Xn when

µ̂ = Xn = 1
n

n∑
i=1

Xi,

which is the sample average of the Xi. For µ = Xn, σ2 7→ logL(µ, σ2) is maximized for the
sample X1, . . . , Xn when

σ̂2 =
n∑
i=1

(Xi −Xn)2

n
=
(

(Xi −Xn)2
)
n
,

which is n−1
n times the sample variance.

(b) The estimator for the first coordinate of θ̃ is the same µ̂ as in (a). We use the chain rule to
calculate

∂ logL
∂σ

= ∂ logL
∂σ2

∂σ2

∂σ
= ∂ logL

∂σ2 2σ.

This is 0 if and only if σ̂2 = σ̂2. If we were to optimize σ over R, we should obtain
two solutions σ̂ = ±

√
σ̂2, but by definition σ is always positive and therefore we obtain

σ̂ =
√
σ̂2 =

√(
(Xi −Xn)2

)
n
.

More generally, we can easily show that MLE is invariant under reparametrization. Let
g : Θ→ Θ̃ be surjective and Xi have the density fi,θ = f̃i,g(θ). Then

L̃(θ̃;x1, . . . , xn) =
∏

f̃i,θ̃(xi) =
∏

f̃i,g(θ)(xi) =
∏

fi,θ(xi) = L(θ;x1, . . . , xn).

This implies that

arg min
θ̃∈Θ̃

L̃(θ̃) = g

(
arg min
θ∈Θ

L(θ)
)
.

(To be precise, we use the set-valued definition of the arg minΘ L := {θ ∈ Θ : L(θ) = minL}
as the set of all minimizers. In the case of a bijective g and a uniquely solvable L, one could
also use the point-valued definition of the arg min as the unique optimizer.)

Exercise 11.3 We toss a coin 100 times and we get 60 heads. We want to do a test to know whether
the coin is fair. We can use the central limit theorem to approximate binomial distributions.

(a) Test the hypothesis with an approximate 0.01 level of significance. Should this test be one or
two-sided (in other words, ΘA =

{
p : p > 1

2
}
or ΘA =

{
p : p 6= 1

2
}
)? Compute the realized

value of the P -value.

(b) What is the largest number of heads we should have in 100 tosses so that we cannot reject
H̃0 := “The coin is not biased towards head”. Compute the realized value of the P -value.

Solution 11.3 Let (Xi)ni=1 be an i.i.d. family of Bernoulli(p) random variables. Let X =
∑100
i=1Xi;

then X ∼ Bin(100, p).

(a) We want to know whether the coin is fair or not, so our hypotheses are

H0 : The coin is fair,
HA : The coin is not fair.
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That is to say,

H0 : Θ0 =
{

1
2

}
,

HA : ΘA =
{
p : p 6= 1

2

}
.

Then we should use a two-sided test.
Under H0, we have that E 1

2
[X] = 50 and Var 1

2
[X] = n 1

2 (1− 1
2 ) = 25. By the central limit

theorem, the distribution of X−50
5 can be approximated by the standard normal distribution.

Let Φ be the c.d.f. of the standard normal distribution. Now, we want to find c1 and c2 such
that

0.01 ≥ P 1
2
[X /∈ (c1, c2)]

= 1− P 1
2

[
c1 − 50

5 <
X − 50

5 <
c2 − 50

5

]
≈ 1− Φ

(
c2 − 50

5

)
+ Φ

(
c1 − 50

5

)
.

We should like to make the rejection zone as large as possible to maximize the power of the
test. Given that Φ is symmetric, we choose

c1 − 50
5 = −c2 − 50

5 ,

which means that c1 = 100− c2. Finally, we use the same approximation and now solve

0.01 ≥ 1− Φ
(
c2 − 50

5

)
+ 1− Φ

(
c2 − 50

5

)
to get

Φ
(
c2 − 50

5

)
≥ 0.995 = Φ←(0.995)

or
c2 − 50

5 ≥ 2.5758

to find
c2 ≥ 62.9.

So the rejection region at the (approximate) significance level α = 0.01 is

K1% = [0; 37] ∪ [63; 100].

Given that 60 /∈ K1%, we cannot reject H0 with 0.01 level of significance.
The approximate realized value of the P -value is

π(60) ≈ 1− Φ
(

60− 50
5

)
+ 1− Φ

(
60− 50

5

)
= 0.0455.

This means that we could reject H0 at the level α = 5%.

(b) We have to take our hypotheses

H̃0 : Θ̃0 =
{
p : p ≤ 1

2

}
,

H̃A : Θ̃A =
{
p : p > 1

2

}
.
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Now we have to find c such that

0.01 ≥ P 1
2
[X > c] ≈ 1− Φ

(
c− 50

5

)
.

Then we have to choose c ≥ 61.6, from which we get K1% = [62; 100]. So we reject H0 if we
have 62 or more heads. The approximate realized value of the P -value is

π̃(60) ≈ 1− Φ
(

60− 50
5

)
= 0.02275.

Exercise 11.4 We want to study the starsCYG-dataset. Run the following R-code. (You
can either install R and R-Studio or another R-environment or run it in your browser https:
//www.kaggle.com/jakobheiss/probstat2020-ex11-4/edit using a free kaggle-account or
alternatively create a free RStudio Cloud account). (You could also use Anaconda to install R and
RStudio.).
l ibrary ( ggp lot2 ) ;
l ibrary ( reshape2 ) ;
l ibrary ( robustbase ) ;
l ibrary (MASS) ;
l ibrary ( quantreg ) ;

data ( starsCYG ) ;

data <− data . frame ( log . Te = starsCYG$log . Te ,
LS = lm( log . l i g h t ~ . , data = starsCYG )$ f itted . va lues ,
L1 = rq ( log . l i g h t ~ . , data = starsCYG )$ f itted . va lues ,
#M = rlm ( l o g . l i g h t ~ . , data = starsCYG , method = "M") $ f i t t e d . va lues ,
S = l q s ( log . l i g h t ~ . , data = starsCYG , method = " S " )$ f itted . va lues ,
MM = lmrob ( log . l i g h t ~ . , data = starsCYG )$ f itted . va lues ,
LMS = l q s ( log . l i g h t ~ . , data = starsCYG , method = " lms " )$ f itted . va lues ,
LTS = ltsReg ( log . l i g h t ~ . , data = starsCYG )$ f itted . va lue s

)

ggp lot ( melt ( data , id . vars = " log . Te" , variable . name = " Regres s ion " , va lue . name = " log . l i g h t " ) ,
aes ( x = log . Te , y = log . l i g h t , c o l o r = Regres s ion ) ) +

geom_point ( data = starsCYG , c o l o r = " #222222 " ) +
geom_l i n e ( ) ;

Each observation corresponds to a star. On the x-axis, the log of the temperature is plotted,
and the y-axis corresponds to the brightness of the stars (log of the light-intensity). We want to
find a (affine) linear regression line (see eq. (5.2.1) in the lecture notes) that helps us to understand
the relationship between these two quantities. In the given code, there are 6 different methods
applied to obtain a regression line. LS (least squares; see Example 5.2.3) and L1 (L1; see Example
6.2.3 in the lecture notes) have already been defined in the lecture. The other four methods S,
MM, LMS and LTS are more advanced and you don’t have to understand them in detail. These four
algorithm all follow the goal to find a line that nicely fits through the majority of points instead
of trying to fit all data points. The main idea of LMS is to minimize the median of the squared
vertical distances between the line and the data points. Instead of the standard least squares
method, which minimizes the sum of squared residuals over n points, the LTS (least trimmed
squares) method attempts to minimize the sum of squared residuals over a subset consisting of
h points. The unused n − h points do not influence the fit. The main idea of LTS is quite well
explained at https://en.wikipedia.org/wiki/Least_trimmed_squares (the R-implementation
of LTS is a bit more advanced than that. If you want to test the basic version of LTS, you have to
extract raw.coefficients from LTS and look at h.alpha.n). The focus of this exercise lies on
having an interesting discussion in the exercise class and understanding intuitively the concept of
outliers and breakpoints. You don’t have to write down a perfect solution.
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(a) Which of those stars are special (in other words, which follow a different pattern than the
majority, or which are outliers)?

(b) In this example, one could solve (a) simply by looking at this two-dimensional plot. In
high-dimensional situations, one cannot visualize the data so easily. Therefore, one needs
algorithms that automatically detect (potential) outliers. One could have the idea to suspect
those points with high vertical distance to the LS-regression-line to be the outliers. Do you
think this is a good approach (in this example)? Do you have a better idea?

(c) Which of these algorithms have a breakpoint high enough for this problem?

Solution 11.4
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Figure 1: The plot outputted by the given code.

(a) The four data points in the upper left corner are outliers. These stars are called giants.

(b) No, this is a very bad idea (in this example, and it is usually not optimal). It is much more
reasonable to use a robust fit (e.g. LTS) and suspect those points as outliers that are vertically
especially far away from the robust regression line. This would for example in the case LTS
find the correct outliers in this example.

(c) LS and L1 both have the breakpoint ε∗ = 0. This means that it would be possible to place a
single data point at a particular position to disturb the estimator arbitrarily much. So in this
example, the four outliers can easily destroy these estimators. (Note that the L1-estimator is
robust with respect to y-outliers, but not with respect to leverage points. In the starsCYG-
dataset, the four outliers are leverage points, because they are far away from the center of the
other points on the x-axis.)
The field of statistics dealing with outliers and breakpoint-robust estimators is called robust
statistics. S, MM, LMS and LTS are more advanced algorithms that are particuarly desigend to
be breakpoint-robust. You can see in this example that they all succeed in fitting the trend
of the majority of the data without fitting the outliers.

If you have feedback regarding the exercise sheets, please send a mail to Jakob Heiss.
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