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Probability and Statistics

Exercise sheet 13

Exercise 13.1 In a new study on the reliability of ball-bearings (in German: Kugellager), two
samples of two different types of ball-bearings were tested, one piece for each of two different types
in one of 10 different scenarios. The resulting numbers of rotations until breakdown were

type I 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84
type II 3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75

Each column represents one of the testing scenarios. Before the realization of this study, it was not
clear which type was more reliable.

(a) Are we dealing with a paired sample? Please explain your answer.

(b) Perform a t-test for the null hypothesis “the expected number of rotations until break-down
is the same for the two types of ball-bearings for each testing scenario” with level 5%. (What
are the model assumptions of a t-test?)

(c) Which other test would be an alternative if you do not want to assume a normal distribution?
Hint: (Clicking the following link will reveal the solution of (c).) You can find the R-code at
https://www.kaggle.com/jakobheiss/sol13-1/edit.

(d) Compare your results with Exercise 12.4 (the numbers in the table are the same), and discuss
your conclusion.

Solution 13.1

(a) This is a paired sample—the connection between the data is the testing scenario, which does
give natural pairs.

(b) The model is given by X1 − Y1, . . . , X10 − Y10 i.i.d. ∼ N (µ, σ2), where µ and σ are unknown
and the Xi − Yi are all independent. The null and alternative hypotheses are given by

H0 : µ = 0 und HA : µ 6= 0.

The test statistic is
T := X − Y n

Sn
√

1/n
,

where the estimator Sn for σ is given by

Sn =

√√√√ 1
n− 1

n∑
i=1

(
Xi − Yi −X − Y n

)2
,

and under H0, T is t-distributed with n − 1 = 9 degrees of freedom. With a level of 5%,
the null hypothesis will be rejected when |T | > t9,0.975 = 2.262. From the data, we obtain
x− y10 = 3.943 and Sn(ω) = 3.18, so T (ω) = 3.92, i.e., H0 is rejected. (The realized value
of the P -value is π((X,Y)(ω)) = 2 (1− t9 (3.92)) = 0.0035, so the P -value is even 10 times
smaller than necessary to reject H0.)
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(c) The sign test does not assume normal distributions. The null hypothesis of this test is that all
samples X1 − Y1, . . . , Xn − Yn are i.i.d. with an arbitrary (unknown) continuous distribution
F with F (0) = 1

2 . Under the null hypothesis, the test statistic

T :=
n∑
i=1

I{Xi−Xi>0}

follows a Bin(n, p = 1
2 )-distribution. For the given data, we obtain T (ω) = 9 by counting how

many times type I performed better than type II. The realized P -value

π((X,Y)(ω)) = PH0

[∣∣∣∣T − 10
2

∣∣∣∣ ≥ 9− 10
2

]
= 2

10∑
k=9

(
n

k

)
2−n = 0.0215

can be easily computed with the following R-code:
binom . t e s t (9 , 10 , a l t e r n a t i v e=" two . s ided " )

or equivalently:
2∗(1−pbinom(8 ,10 , prob =0.5))

So we reject H0.
Alternatively, a ranked sign test (which has not been covered in the lecture) would be a good
option, as it also does not assume normality. It needs basically the same assumptions as the
sign test and additionally symmetry of the distribution of Xi − Yi around zero. Running this
test in R
wi lcox . t e s t ( c ( 3 . 0 3 , 5 . 5 3 , 5 . 6 0 , 9 . 3 0 , 9 . 9 2 , 12 .51 , 12 .95 , 15 .21 , 16 .04 , 1 6 . 8 4 ) ,

c ( 3 . 1 9 , 4 . 2 6 , 4 . 4 7 , 4 . 5 3 , 4 . 6 7 , 4 . 6 9 , 12 .78 , 6 . 7 9 , 9 . 3 7 , 1 2 . 7 5 ) , pa i r ed=TRUE)

results in a P -value of 0.0039. So this test rejects H0, too.
All three tests agree that the observed data would be significantly more likely if type I
ball-bearings are more reliable than their type II counterparts.
All the calculations done in this solution can be found in the R-code https://www.kaggle.c
om/jakobheiss/sol13-1/edit.

(d) In Exercise 12.4, the null hypothesis was not rejected, because there we had less information
available. The additional information that each of the columns corresponds to a specific
testing scenario is a very valuable information. An intuitive explanation for this is that part
of the “distracting noise” is due to the choice of testing scenarios. So conditioned on the
choice of testing scenario, the “distracting noise” is much smaller.

Exercise 13.2 Consider the null hypothesisH0: X has the density f0(x) = f(x) and the alternative
HA: X has the density X f1(x) = f(x− 1) for the following cases:

(a) f is a standard normal density,

f(x) = 1√
2π
e−

x2
2 .

(b) f is a Cauchy density,

f(x) = 1
π(1 + x2) .
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Compute in both cases the form of the rejection region of the most powerful test (also known as
the likelihood ratio test; see the Neyman-Pearson lemma). Which differences do you find.

Solution 13.2 Using the Neyman-Pearson test with the hypothesis

H0 : f0(x) = f(x),
HA : f1(x) = f(x− 1),

the likelihood ratio is given by

R(x) := L(θ1;x)
L(θ0;x) = f1(x)

f0(x) = f(x− 1)
f(x) .

(a) In the case of a normal distribution, R(x) = ex−
1
2 , and we reject when R(x) > c, i.e.,

x > ln c+ 1
2 . So the rejection region is of the form (a,∞).
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Figure 1: Rejections regions for the normal case.

(b) In the case of a Cauchy distribution, the likelihood ratio is given by R(x) = x2+1
x2−2x+2 , and

then we have an interesting behavior as one can see in Figure 2. If we put c = 1, we have an
unbounded interval; but if we put c > 1, we get a bounded interval. (Of course, the choice of
c depends on the desired level α of the the test. E.g. c = 1 corresponds to a rejection region
of x ≥ 1/2, wich corresponds to α ≈ 0.3524.) This happens because the Cauchy distribution
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Figure 2: Rejections regions for the Cauchy case.

is heavy-tailed.
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Exercise 13.3 Consider X1, ..., Xn i.i.d. ∼ Exp(λ), λ ∈ Θ = (0,+∞). Recall that the density of
Xi ∼ Exp(λ) is given by fλ(x) = λe−λxI(0,+∞)(x). We want to test H0 : λ = 1 versus HA : λ = 2.

(a) Apply the Neyman-Pearson lemma to find a most powerful test of level α based on X =
(X1, ..., Xn).
Hint: We recall that if Y1, ..., Yn are i.i.d. ∼ Exp(λ0), then

∑n
i=1 Yi ∼ G(n, λ0).

(b) What is the power of the Neyman-Pearson test you have found?
Hint: You can express your answer in terms of Fn and F−1

n , the cdf and inverse cdf of a
Gamma distribution with parameters n and 1, that we denote by G(n, 1).

(c) For n = 10, we observe the following sample:
1.009 0.132 0.384 0.360 0.206 0.588 0.872 0.398 0.339 1.079

What decision do you take if you want the level of the test to be equal to α = 0.05? What
about α = 0.01?
Hint: The quantiles of the G(10, 1) distribution of order 5% and 1% are 5.425 and 4.130,
respectively.

Solution 13.3

(a) The NP test is given in the form

ϕ(x) =


1, fλ1 (x)

fλ0 (x) > c(α)
γα,

fλ1 (x)
fλ0 (x) = c(α)

0, fλ1 (x)
fλ0 (x) < c(α),

for some suitable c(α) > 0 and γα ∈ [0, 1] such that Eλ0 [ϕ(X)] = α. A value of 1 corresponds to
rejecting the null hypothesis, and a value of 0 corresponds to not rejecting the null hypothesis.
Here we only consider x = (x1, ..., xn)T such that xi > 0 for each i ∈ {1, ..., n}, since the Xi

are positive almost surely.
The likelihood ratio is given by

R(x) := fλ1(x)
fλ0(x) =

∏n
i=1 λ1e

−λ1xi∏n
i=1 λ0e−λ0xi

=
(
λ1

λ0

)n
e−λ1

∑n

i=1
xi+λ0

∑n

i=1
xi

= const.(λ0, λ, n) exp
(

(λ0 − λ1)
n∑
i=1

xi

)
,

and λ0 − λ1 = −1 is negative. Moreover, const.(λ0, λ, n) = 2n. So

R(x) > c

⇔ 2ne−
∑n

i=1
xi > c

⇔ g
(
T (x1, ..., xn)

)
> c

⇔ T (x1, ..., xn) < t =: g−1(c),

where T (x1, ..., xn) =
∑n
i=1 xi, g(s) = 2n exp(−s) and so t = − log c+n log 2. The equivalence

holds since g is strictly decreasing.
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Under H0 : λ = λ0 = 1,
∑n
i=1 Xi ∼ G(n, 1) (by independence) has a continuous distribution.

Therefore the case fλ1 (x)
fλ0 (x) = c(α) (which is equivalent to

∑n
i=1 xi = tα) has probability 0, and

in particular, the middle branch of the NP test does not affect the condition Eλ0 [ϕ(X)] = α.
Therefore, we can arbitrarily choose γα = 0.
The NP test can then be equivalently given by

ϕ(x) =
{

1,
∑n
i=1 xi < tα

0,
∑n
i=1 xi ≥ tα.

We still need to enforce the condition Eλ0 [ϕ(X)] = α by choosing a suitable value of tα. This
is equivalent to

Pλ0

[
n∑
i=1

Xi < tα

]
= α,

or also to

Pλ0

[
n∑
i=1

Xi ≤ tα

]
= α.

Since
∑n
i=1 Xi ∼ G(n, 1) under H0, this means that tα = F−1

n (α), for Fn the cdf of the
G(n, 1)-distribution.

(b) By the definition of the power, we have

β = Eλ1 [ϕ(X)] = Pλ1

[
n∑
i=1

Xi ≤ F−1
n (α)

]
.

Recall that if Y ∼ Exp(λ), then λY ∼ Exp(1). Thus, under H1 : λ = λ1 = 2, 2X1, ..., 2Xn

are i.i.d ∼ Exp(1), and therefore, by independence,
∑n
i=1 2Xi ∼ G(n, 1). It follows that

β = Pλ1

[
2

n∑
i=1

Xi ≤ 2F−1
n (α)

]
= Fn

(
2F−1

n (α)
)
.

(c) We compute
∑10
i=1 xi = 5.367.

• For α = 0.05, F−1
10 (α) = F−1

10 (0.05) ≈ 5.425 >
∑10
i=1 xi. Therefore, we reject H0 at a

level of 5%.
• For α = 0.01, F−1

10 (0.01) ≈ 4.130. Therefore, we cannot reject H0 at a level of 1%—these
data do not present a compelling enough evidence against the null hypothesis.

Exercise 13.4 Again in the setup of Exercise 13.3, it turns out that the Neyman-Pearson test
you found there in (a) is actually UMP at the level α for testing H0 : λ = 1 versus H ′A : λ > 1.
More precisely, the same NP test is the most powerful among all tests of level α for the alternative
H ′′A : λ = λ1 for any λ1 ∈ Θ′A = (1,+∞), not only for λ ∈ ΘA = {2}.

How can you see why this is true?

Solution 13.4 The explicit form of the NP test for this problem is

ϕ(x) =
{

1,
∑n
i=1 xi < F−1

n (α),
0,

∑n
i=1 xi ≥ F−1

n (α).
We know from the Neyman-Pearson lemma applied in Exercise 13.3 that ϕ is a UMP test of level
α for testing H0 : λ = 1 versus H1 : λ = 2. In other words, for any other test ϕ′ such that
Eλ0 [ϕ′(X)] ≤ α, we have a lower power, i.e.,

5 / 6

https://metaphor.ethz.ch/x/2020/fs/401-2604-00L/


Probability and Statistics, Spring 2020 Exercise sheet 13

Eλ1 [ϕ′(X)] ≤ Eλ1 [ϕ(X)].

However, ϕ does not depend on the particular value of λ1 = 2—all we use is that λ0−λ1 is negative.
More specifically, if we had to test H0 : λ = 1 versus H ′′A : λ = λ′1 for some λ′1 > 1, we should
obtain exactly the same test as above. Since this same test is again UMP of level α, this implies
that it is actually UMP of level α for the testing problem H0 : λ = 1 versus H ′A : λ > 1, in the
sense given in the exercise.

If you have feedback regarding the exercise sheets, please send a mail to Jakob Heiss.
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