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Exercise 7.1 Let X1, . . . , Xn be i.i.d. with distribution function (cdf) F .

(a) Let Sn := max1≤i≤nXi. Find the cdf of Sn as a function of F .

(b) Do the same for In := min1≤i≤nXi.

(c) Fix x ∈ R such that F (x) ∈ (0, 1). What is the limit of the cdf of Sn at x as n → ∞?
What about the cdf of In? How would you interpret these results? What does this mean
if X1, . . . , Xn take values in a finite set {ξ1, . . . , ξk}? To analyse the last question, compute
P [|Sn − ξk| > δ] and P [|In − ξ1| > δ] for δ > 0.

Solution 7.1

(a) For x ∈ R, by using independence and then the identical distribution,

P [Sn ≤ x] = P
[

max
1≤i≤n

Xi ≤ x
]

= P [X1 ≤ x, . . . ,Xn ≤ x]

=
n∏
i=1

P [Xi ≤ x]

=
(
F (x)

)n
.

(b) For x ∈ R, in the same way,

P [In ≤ x] = 1− P [In > x]
= 1− P [X1 > x, . . . ,Xn > x]

= 1−
n∏
i=1

P [Xi > x]

= 1−
(
1− F (x)

)n
.

(c) Let x ∈ R be such that F (x) ∈ (0, 1). Then

lim
n→∞

P [Sn ≤ x] = lim
n→∞

(
F (x)

)n = 0

and
lim
n→∞

P [In ≤ x] = lim
n→∞

(
1−

(
1− F (x)

)n) = 1− 0 = 1.

This can be interpreted as saying that as n grows, the maximum and minimum are dragged to
an extreme value (if they stay somewhere inside the support of X1, . . . , Xn, we obtain values
of the cdf of Sn or In away from 0 and 1, respectively).
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In the example where Xi ∈ {ξ1, . . . , ξk} with ξ1 < · · · < ξk, Sn and In converge to ξk and ξ1
respectively, in probability (a concept to be defined later). Indeed,

P [|Sn − ξk| > δ] = P [Sn < ξk − δ] =
(
F (ξk − δ)

)n → 0

by (a), and analogously, P [|In − ξ1| > δ]→ 0 as n→∞ by (b), for any δ > 0.

Exercise 7.2

(a) Construct a probability space (Ω,F ,P) and a sequence of sets (An)n∈N in F with∑
n∈N

P [An] =∞

and P
[⋂

n∈N
⋃
k≥nAk

]
= 0.

(b) Let (Ω,F ,P) be a probability space. Take a sequence (Un)n∈N of i.i.d. random variables with
uniform distribution U (0, 1).

(i) Show that

P
[
∃α > 1 : lim inf

n→∞
nαUn ∈ R

]
= 0.

Hint: It may be useful to define Aαn := {Un < n−α} for α > 1. Remember that the
countable union of sets of probability 0 has probability 0.

(ii) Prove that

P
[
lim inf
n→∞

nUn ∈ R
]
> 0.

Solution 7.2

(a) Take ([0, 1],B([0, 1]), λ) as a probability space, where B([0, 1]) is the Borel σ-algebra on [0, 1]
and P = λ the restriction of the Lebesgue measure to [0, 1]. Let U be the identity function;
then U is distributed as a uniform random variable on [0, 1] under λ. Define

An :=
{
x ∈ [0, 1] : U(x) ∈

[
0, 1
n

]}
=
[
0, 1
n

]
.

Then we have that P [An] = 1
n , so

∑
n∈N P [An] =∞. But we also have x ∈

⋂
n∈N

⋃
k≥nAk if

and only if x = 0. Therefore P
[⋂

n∈N
⋃
k≥nAk

]
= 0.

(b) (i) We use the Borel–Cantelli lemma. Define Aαn := {Un < n−α}; then

∞∑
n=1

P [Aαn] =
∞∑
n=1

1
nα

<∞,

and by the Borel–Cantelli lemma, P
[⋂

n∈N
⋃
j≥nA

α
j

]
= 0. Thus

P

⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥n

Aαj

 = 0.
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Let ω ∈ Ω be such that there exists α(ω) > 1 for which lim infn→∞ nα(ω)Un(ω) < ∞.
Then take 1 < α̃(ω) < α(ω) with α̃(ω) ∈ Q. We have that lim infn→∞ nα̃(ω)Un(ω) = 0.
Thus for all n ∈ N, there exists m(ω) > n such that mα̃(ω)Um(ω) < 1. Thus, ω ∈⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥nA

α
j . Finally this gives

{∃α > 1 : lim inf
n→∞

nαUn ∈ R} ⊆
⋃
α>1
α∈Q

⋂
n∈N

⋃
j≥n

Aαj ,

and this implies

P
[
∃α > 1 : lim inf

n→∞
nαUn ∈ R

]
= 0.

(To be precise, we did not show that B := {∃α > 1 : lim infn→∞ nαUn ∈ R} is in F ; so
we have only argued that B has outer P-measure 0. The conclusion becomes rigorous if
we complete F with respect to P, which means here that we take the Lebesgue σ-algebra
instead of the Borel σ-algebra.)

(ii) We use again the Borel–Cantelli lemma. Define An = {Un ≤ n−1} so that (An)n∈N are
independent because the Un are. Moreover, P [An] = 1

n and hence
∑
n∈N P [An] = ∞.

By Borel–Cantelli,

P

⋂
n∈N

⋃
k≥n

Ak

 = 1 > 0.

In addition, if ω ∈
⋂
n∈N

⋃
k≥nAk, then for all n ∈ N there exists kn(ω) ≥ n such that

kn(ω)Ukn(ω)(ω) ≤ 1. Thus, 0 ≤ lim infn→∞ nUn(ω) ≤ 1. To conclude,⋂
n∈N

⋃
k≥n

Ak ⊆
{

lim inf
n→∞

nUn ∈ R
}

and P
[
lim inf
n→∞

nUn ∈ R
]

= 1 > 0.

Exercise 7.3

(a) Let X ∼ U (0, 1). Compute E [Xn], E
[
X

1
n

]
for n ∈ N, and ΨX(t) := E

[
etX
]
whenever these

are defined. For which t is this the case?

(b) Let X ∼ Exp(α) for α > 0. Derive the cdf of X and E [Xn] for n ≥ 1 from the density
function.
Remark: Watch out for the parametrisation—different sources use different parametrisations.
In the lecture we consider the density function of an Exp(α)-distributed random variable to
be f(x) = αe−αx for x ≥ 0.

Solution 7.3

(a) For α > −1,

E [Xα] =
∫ 1

0
xαdx = 1

α+ 1 .

In particular,

E [Xn] = 1
n+ 1
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and
E
[
X

1
n

]
= n

n+ 1 .

Moreover,

ΨX(t) = E
[
etX
]

=
∫ 1

0
etxdx = et − 1

t

for any t 6= 0, while ΨX(0) = 1. In particular, ΨX(t) is well defined for any t ∈ R. (This can
also be seen directly because etX is bounded by 1 + et for any fixed t ∈ R.)

(b) The density of X is

f(x) = αe−αxI{x≥0}.

For t > 0, we calculate ∫ t

0
αe−αxdx = 1− e−αt

and therefore
F (t) =

{
0, t < 0

1− e−αt, t ≥ 0.

We also compute, with the substitution y = αx

E [Xn] =
∫ ∞

0
xnαe−αxdx

=
∫ ∞

0

yn

αn
αe−y

dy

α

= 1
αn

∫ ∞
0

yne−ydy

= Γ(n+ 1)
αn

= n!
αn

(using properties of the gamma function; alternatively one could integrate by parts n times—
this would directly lead to n! instead of Γ(n+ 1)).

Exercise 7.4 An auto towing company services a 50 mile stretch of a highway. The company is
located 20 miles from one end of the stretch, but inside the stretch. Breakdowns occur uniformly
along the highway, and the towing trucks travel at a constant speed of 50mph. Find the mean and
variance of the time elapsed between the instant the company is called and the instant a towing
truck arrives at the breakdown.

Where is the optimal location for the company if they want to minimize the expected waiting
time?

Solution 7.4 Call the left endpoint of the 50 mile stretch zero, and let X be the number of miles
from the left endpoint that a breakdown occurs. Then X ∼ U (0, 50). Assume that the towing
company is located 20 miles from the left endpoint, so that the distance Y of the breakdown from
the location of the towing company is Y = |X − 20|. It will take the truck Z = Y

50 = |X−20|
50 hours

to reach the location of the breakdown. We want the mean and variance of Z. First,
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E [Z] = E
[
|X − 20|

50

]
= 1

50

∫ 50

0
|x− 20|f(x)dx = 1

502

∫ 50

0
|x− 20|dx

= 1
2500

(∫ 20

0
(20− x)dx+

∫ 50

20
(x− 20)dx

)
= 1

2500(200 + 450) = 0.26 (hours).

Next,

E
[
Z2] = 1

2500E
[
(X − 20)2] = 1

2500E
[
X2 − 40X + 400

]
= 1

2500
1
50

∫ 50

0
(x2 − 40x+ 400)dx ≈ 0.0933 (hours2),

and therefore

Var [Z] = E
[
Z2]− E [Z]2 = 0.0933− 0.262 ≈ 0.0257 (hours2).

(If one wanted the units, one could write Var [Z] ≈ 0.0257h2). This gives the standard deviation
σ(Z) ≈ 0.16 (hours)

The optimal location is the median of X, because of Exercise 6.4(d). Since we assumed that
X ∼ U (0, 50), the median of X is 25. So the optimal location is in the middle of the stretch, as
one expects from intuition or symmetry.

If you have feedback regarding the exercise sheets, please send a mail to Jakob Heiss.
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