Prof. Dr. Alessandro Sis Paula Truöl

FS 2020 ETH Zürich

Exercise Sheet 2

Universal coefficient theorem and cup products

- 1. Compute the singular cohomology groups with \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z}$ coefficients of the following spaces via simplicial or cellular cohomology and check the universal coefficient theorem in each case.
 - (a) The two-dimensional torus $T = S^1 \times S^1$
 - (b) The Klein bottle K
 - (c) The real projective plane $\mathbb{R}P^2$
- 2. For an abelian group G, show that if $f: S^n \to S^n$ $(n \ge 1)$ has degree d then $f^*: H^n(S^n; G) \to H^n(S^n; G)$ is multiplication by d.
- 3. Consider the *Moore space* $M(\mathbb{Z}/m\mathbb{Z}, n)$, which is obtained from the sphere S^n by attaching a single (n+1)-cell via an attaching map $S^n \to S^n$ of degree m.
 - (a) For an abelian group G, compute $H_*(M(\mathbb{Z}/m\mathbb{Z}, n)) = H_*(M(\mathbb{Z}/m\mathbb{Z}, n); \mathbb{Z})$ and $H^*(M(\mathbb{Z}/m\mathbb{Z}, n); G)$.
 - (b) Show that the quotient map $M(\mathbb{Z}/m\mathbb{Z}, n) \to M(\mathbb{Z}/m\mathbb{Z}, n)/S^n \cong S^{n+1}$, which contracts the S^n we started with to a point, induces trivial maps on the reduced homology $\widetilde{H}_i(M(\mathbb{Z}/m\mathbb{Z}, n); \mathbb{Z})$ for all i, but not on $H^{n+1}(M(\mathbb{Z}/m\mathbb{Z}, n); \mathbb{Z})$.
 - (c) Conclude that the splitting in the universal coefficient theorem cannot be natural, i.e. there does not exist an isomorphism

$$i_X : H^n(X; \mathbb{Z}) \to \operatorname{Ext}(H_{n-1}(X), \mathbb{Z}) \oplus \operatorname{Hom}(H_n(X), \mathbb{Z})$$

for every topological space X such that for every continuous map $f: X \to Y$ between topological spaces there is a commutative diagram

$$\begin{array}{cccc} H^{n}(X;\mathbb{Z}) & & \oplus & \operatorname{Hom}(H_{n}(X),\mathbb{Z}) \\ f^{*} & & & & & & & \\ f^{*} & & & & & & & \\ H^{n}(Y;\mathbb{Z}) & & & & & & \\ \hline i_{Y} & & & & & & \\ \end{array} \xrightarrow{i_{Y}} \operatorname{Ext}(H_{n-1}(Y),\mathbb{Z}) & & \oplus & & \operatorname{Hom}(H_{n}(Y),\mathbb{Z}). \end{array}$$

4. For $G \in \{\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}\}$, compute the cup product structure in $H^*(K; G)$ for the Klein bottle K. You can use pictures to define bases for H^* as in the examples in the lecture.