Schmidt's game applied to the set of badly approximable numbers

Charlotte Dombrowsky

02 April 2020

Notation 1. For any set $X \subset \mathbb{R}^{n}$ we denote with $\rho(X)$ its diameter, i.e. $\rho(X)=\max \{d(x, y) \mid x, y \in X\}$.

Ayesha (A) and Bhupen (B) are playing a game together. The game has the following rules:

- They fix $m \in \mathbb{N}_{>0}$.
- A chooses a number $0<\alpha<\frac{1}{2}$ and B chooses a number $0<\beta<1$.
- B chooses a closed ball $B_{0} \subset \mathbb{R}^{m}$.
- A chooses a closed ball $A_{0} \subset B_{0}$ such that $\rho\left(A_{0}\right)=\alpha \rho\left(B_{0}\right)$
- B chooses a closed ball $B_{1} \subset A_{0}$ such that $\rho\left(B_{1}\right)=\beta \rho\left(A_{0}\right)$
- Now A and B play alternatively: If it is A's turn, she chooses a closed ball $A_{n} \subset B_{n}$ such that $\rho\left(A_{n}\right)=\alpha \rho\left(B_{n}\right)$ If it is B's turn, he chooses a closed ball $B_{n} \subset A_{n-1}$ such that $\rho\left(B_{n}\right)=\beta \rho\left(A_{n-1}\right)$
This game is called Schmidt's game after its inventor.
Definition 2. A set $S \subset \mathbb{R}^{m}$ is called (α, β)-winning if A can play in such a way that the unique intersection point $\cap_{n=0}^{\infty} A_{n}=\cap_{n=0}^{\infty} B_{n} \in S$ regardless of how B is playing. A set is called α-winning if it is (α, β)-winning for all $\beta \in(0,1)$ and it is called winning if it is α-winning for some α.

Informally B tries to stay away from the target S whilst A tries to land on it.

Example 3. Trivially $S=\mathbb{R}^{m}$ is winning.
In the first theorem, we want to show a more interesting example of a winning set.

Before doing so, we want to state two properties of winning sets which we will not proof:
Theorem 4. The Hausdorff dimension of a winning set is maximal.
Theorem 5. The image by a C^{1}-diffeomorphism of a winning set is again a winning st.

Theorem 6 (Schmidt, 1966). The set $S:=\{x \in \mathbb{R}$ such that $\exists c(x)>0$: $\left.\|q x\|>\frac{c(x)}{q} \forall q \in \mathbb{N}\right\}$ (i.e. the set of badly approximable numbers) is winning.

Proof. We can restrict ourselves to the unit interval [0, 1]. Indeed since $\alpha, \beta<1$, there exists $n, a, l \in \mathbb{Z}$ such that $\rho\left(B_{n}\right)<1$ and $B_{n} \subset\left[a+\frac{1}{l}, a+1+\frac{1}{l}\right]$. We saw that an irrational number is badly approximable if and only if the coefficients of its continued fraction are bounded. Thus we can construct a bijection between the badly approximable numbers in the unit interval and $\left[a+\frac{1}{l}, a+1+\frac{1}{l}\right]$.

Since $0<\alpha<\frac{1}{2}$ and $0<\beta<1$, we have that $\alpha \beta<\frac{1}{2}$. Thus

$$
R:=(\alpha \beta)^{-1}>2
$$

For all $n \in \mathbb{Z}_{\geq 0}$ we define

$$
Q_{n}=\left\{\frac{p}{q} \text { where } \operatorname{gcd}(p, q)=1 \quad: R^{\frac{n-3}{2}} \leq q<R^{\frac{n-2}{2}}\right\} \subset \mathbb{Q}
$$

Note that if $n \leq 2$ then $\frac{n-2}{2} \leq 0$, thus $R^{\frac{n-2}{2}} \leq 1$ and therefore $Q_{0}=Q_{1}=$ $Q_{2}=\emptyset$. The sets Q_{n} are disjoint and $\mathbb{Q}=\cup_{n=3}^{\infty} Q_{n}$.

Let $\frac{p}{q} \neq \frac{p^{\prime}}{q^{\prime}} \in Q_{n}$. Note that $\left|p q^{\prime}-p^{\prime} q\right|$ has to be a nonzero integer, thus $\left|p q^{\prime}-p^{\prime} q\right| \geq 1$. Hence

$$
\begin{equation*}
\left|\frac{p}{q}-\frac{p^{\prime}}{q^{\prime}}\right|=\left|\frac{p q^{\prime}-p^{\prime} q}{q q^{\prime}}\right| \geq \frac{1}{\left|q q^{\prime}\right|}>\frac{1}{\left(R^{\frac{n-2}{2}}\right)^{2}}=R^{-n+2} \tag{1}
\end{equation*}
$$

For $\frac{p}{q} \in \mathbb{Q}_{n}$ we define the dangerous interval as follows:

$$
\Delta\left(\frac{p}{q}\right):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\delta R^{-n}\right\}
$$

where $0<\delta<1$ depends on α and on the first move of B and will be specified later.

Note that the dangerous interval of a fraction is either "in the middle of" the unit interval or at its boarder. (See figure 1.)

Figure 1: Two possibilities for the dangerous interval
Our goal is to show that there exists a strategy for A such that for all $n \in \mathbb{N}$ and $\forall \frac{p}{q} \in Q_{n}$, we have

$$
\begin{equation*}
A_{n} \cap \Delta\left(\frac{p}{q}\right)=\emptyset \tag{2}
\end{equation*}
$$

This implies that $x \in \cap_{n=0}^{\infty} A_{n}$ satisfies for all $p, q \in \mathbb{Z}$ that $\left|x-\frac{p}{q}\right| \geq \delta R^{-n}$. Thus x is badly approximable, i.e. $x \in \operatorname{Bad}(1)$.

Let $B_{0} \subset[0,1]$ be any closed ball. Set $\delta:=\rho\left(B_{0}\right)\left(\frac{1}{2}-\alpha\right)$
We define A_{n} inductively. Thus assume that for all $j<n A_{j}$ is a closed interval such that equation (2) holds. If $B_{n} \cap \Delta\left(\frac{p}{q}\right)=\emptyset$, then A can choose any closed interval of B_{n} with diameter $\alpha \rho\left(B_{n}\right)$ Otherwise we claim that there exists a unique point $\frac{p_{n}}{q_{n}} \in Q_{n}$ such that $\Delta\left(\frac{p_{n}}{q_{n}}\right)$ intersects B_{n}. Indeed assume there are $\frac{p}{q} \neq \frac{p^{\prime}}{q^{\prime}} \in Q_{n}$ and x, x^{\prime} such that $x \in \Delta\left(\frac{p}{q}\right) \cap B_{n}$ and $x^{\prime} \in \Delta\left(\frac{p^{\prime}}{q^{\prime}}\right) \cap B_{n}$. Then

$$
\begin{array}{r}
\left|\frac{p}{q}-\frac{p^{\prime}}{q^{\prime}}\right|=\left|\frac{p}{q}-x+x-x^{\prime}+x^{\prime}-\frac{p^{\prime}}{q^{\prime}}\right| \\
\stackrel{(a)}{\leq}\left|\frac{p}{q}-x\right|+\left|x-x^{\prime}\right|+\left|x^{\prime}-\frac{p^{\prime}}{q^{\prime}}\right| \stackrel{(b)}{\leq} 2 \delta R^{-n}+1 \tag{3}\\
\stackrel{(c)}{=} 2 \rho\left(B_{0}\right)\left(\frac{1}{2}-\alpha\right) R^{-n}+1 \stackrel{(d)}{\leq} R^{-n}+1 \stackrel{(e)}{\leq} R^{-n+2}
\end{array}
$$

where (a) uses the triangle inequality, (b) follows since $x, x^{\prime} \in \Delta\left(\frac{p}{q}\right)$ and $x, x^{\prime} \in$ $B_{n} \subset[0,1]$, (c) uses the definition of $\delta,(\mathrm{d})$ follows since $\rho\left(B_{0}\right) \leq 1$ and $0<\alpha<\frac{1}{2}$ and (e) since $R>2$. But $\left|\frac{p}{q}-\frac{p^{\prime}}{q^{\prime}}\right| \leq R^{-n+2}$ contradicts equation (1) and thus proves the claim.

Therefore it suffices to consider two cases

1. The dangerous $\Delta\left(\frac{p_{n}}{q_{n}}\right)$ divides B_{n} in two intervals as in the first diagram of figure 1.
Note that the diameter of B_{n} is $(\alpha \beta)^{n} \rho\left(B_{0}\right)=R^{-n} \rho\left(B_{0}\right)$. The larger of both intervals has length bigger or equal than

$$
\begin{array}{r}
\frac{1}{2}\left(\rho\left(B_{n}\right)-\rho\left(\Delta\left(\frac{p_{n}}{q_{n}}\right)\right)\right)=\frac{1}{2}\left(\rho\left(B_{n}\right)-2 \delta R^{-n}\right) \\
=\frac{1}{2}\left(\rho\left(B_{n}\right)-2 R^{-n} \rho\left(B_{0}\right)\left(\frac{1}{2}-\alpha\right)\right)=\frac{1}{2}\left(\rho\left(B_{n}\right)-(1-2 \alpha) \rho\left(B_{n}\right)\right) \\
=\alpha \rho\left(B_{n}\right)
\end{array}
$$

2. The dangerous $\Delta\left(\frac{p_{n}}{q_{n}}\right)$ does not divide $[0,1]$ as in the second diagram of figure 1.
Then it is trivially possible to choose a closed interval $A_{n} \subset B_{n} \backslash \Delta\left(\frac{p_{n}}{q_{n}}\right)$ of length $\alpha \rho\left(B_{0}\right)$.

Thus we found a strategy such that condition (2) holds.
Note that we proved a stronger statement than the theorem: We did not show that there is some choice of α such that the set $\operatorname{Bad}(1)$ is winning, we showed that it is winning for any choice of α.

Theorem 4 Together with theorem 6 imply Jarnik's theorem.
In the second theorem we want to observe how the intersection of winning sets behave.

Theorem 7. The intersection of countably many α-winning sets is α-winning.
Before we can to prove this theorem, we need to formalize the notation of a winning strategy.

Let S be an α-winning set. Fix $0<\beta<1$. Then we can find functions $f_{0}, f_{1}, f_{2}, f_{3}, \ldots$ such that for $i \in \mathbb{N}, f_{i}$ takes as arguments closed balls $B_{0}, B_{1}, \ldots, B_{i}$ where $\rho\left(B_{j}\right)=(\alpha \beta)^{j} \rho\left(B_{0}\right)$ and $B_{0} \supset B_{1} \supset \ldots \supset B_{i}$. The image of $f_{i}\left(B_{0}, \ldots, B_{i}\right)$ is a closed ball of diameter $\alpha(\alpha \beta)^{i}$ contained in B_{i}. Moreover for $A_{i}:=f_{i}\left(B_{0}, \ldots, B_{i}\right)$ we have $\cap_{i=1}^{\infty} A_{i} \in S$. We call such a strategy a $(\alpha, \beta ; S)$ winning strategy. Thus the n'th move of A corresponds to the function f_{n-1}. (Note that for a given set, there might be several winning strategies and thus several sequences of functions $\left\{f_{i}\right\}_{i}$. .)

Proof. Fix $0<\beta<1$. Note that indepedant of A's strategy, in his n'th move B always chooses a ball B_{n-1} of diameter $\beta \rho\left(A_{n-2}\right)$. Let $S_{0}, S_{1}, S_{2}, \ldots$ be countably many α-winning sets. Define $S:=\cap_{j=1} S_{j}$. We want to show that S is α winning.

We first want to make sure that the intersection of sets chosen by A is contained in S_{1}. For this purpose we assume, that A can only choose her first, third, fifth, ... movement. Assume A made a choice for the set A_{0} such that $\rho\left(A_{0}\right)=\alpha \rho\left(B_{0}\right)$. What happens between the first and the third move of A? B chooses a closed ball B_{1} of diameter $\beta \rho\left(A_{0}\right)$, then we assume that a closed ball A_{1} of diameter $\alpha \rho\left(B_{1}\right)$ is chosen (after some yet unknown rule) and then B chooses again a closed ball B_{2} of diameter $\beta \rho\left(A_{1}\right)=\beta \alpha \beta \rho\left(A_{0}\right)$. More generally, if for some odd n A choose a set A_{n-1} then $B_{(n-1)+2}$ has diameter $\beta \alpha \beta \rho\left(A_{n}\right)$. Thus to ensure that $\cap_{n=0}^{\infty} A_{n} \in S_{1}$, A should chose a $\left(\alpha, \beta \alpha \beta ; S_{1}\right)$ winning strategy.

Now we want to improve the strategy such that $\cap_{n=0}^{\infty} A_{n} \in S_{2}$. For the first, third, fifth,... move, A adopts the rule described above and we want to find a rule for the second, sixth, tenth,... move. Using a similar reasoning as above, we find that if A chose a ball A_{n-1} for $n \equiv 2 \quad[4]$, then the diameter of $B_{(n-1)+4}$ is $\beta(\alpha \beta)^{3}$. Thus A should play according to a $\left(\alpha, \beta(\alpha \beta)^{3} ; S_{2}\right)$-winning strategy.

More generally, if $k \equiv 2^{l-1}\left[2^{l}\right]$ then A plays with a $\left(\alpha, \beta(\alpha \beta)^{2^{l}-1} ; S_{l}\right)$-winning strategy to enforce that $\cap_{n=0}^{\infty} A_{n} \in S_{l}$ and thus $\cap_{n=0}^{\infty} A_{n} \in S$.

Formally we have: For $l=0,1,2, \ldots$, let $f_{0}^{l}, f_{1}^{l}, f_{2}^{l} \ldots$ be an $\left(\alpha, \beta(\alpha \beta)^{2^{l}-1} ; S_{2}\right)$ winning strategy.

We want to define a strategy $f_{0}, f_{1}, f_{2}, \ldots$ for S. Let $k \in\{0,1,2, \ldots\}$. For $k+1 \equiv 2^{l-1}\left[2^{l}\right]$ and $k+1=2^{l-1}+(t-1) 2^{l}$ Set

$$
A_{k}:=f_{k}\left(B_{1}, \ldots, B_{k}\right)=f_{t}^{l}\left(B_{2^{t-1}}, B_{2^{t-1}+2^{l}}, \ldots, B_{2^{t-1}+(t-1) 2^{l}}\right)
$$

References

[1] W. M. Schmidt. On badly approximable numbers and certain games. Trans., Amer. Math.Soc. Vol. 123, 1966, pp. 178-199.
[2] W.M. Schmidt. Diophantine approximation. Lecture Notes in Mathematics 785, Springer, 1980, p. 51.
[3] Sanju Velani Victor Beresnevich Felipe Ramírez. Metric Diophantine Approximation: aspects of recent work. Cambridge University Press, 2016, pp. 66-67.

