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Notation 1. For any set X C R™ we denote with p(X) its diameter, i.e.
p(X) = max{d(z,y)|lx,y € X}.

Ayesha (A) and Bhupen (B) are playing a game together. The game has the
following rules:

e They fix m € Nyg.

e A chooses a number 0 < a < % and B chooses a number 0 < < 1.
e B chooses a closed ball By C R™.

e A chooses a closed ball Ay C By such that p(Ay) = ap(Bo)

e B chooses a closed ball By C Ag such that p(B1) = 8p(Ao)

Now A and B play alternatively: If it is A’s turn, she chooses a closed ball
A, C B, such that p(A,) = ap(B,) If it is B’s turn, he chooses a closed
ball B,, C A,_1 such that p(B,) = Sp(4An-1)

This game is called Schmidt’s game after its inventor.

Definition 2. A set S C R™ is called (o, 8)-winning if A can play in such a
way that the unique intersection point NS oA, = N2y B, € S regardless of how
B is playing. A set is called a-winning if it is (o, B)-winning for all B € (0,1)
and it is called winning if it is a-winning for some «.

Informally B tries to stay away from the target S whilst A tries to land on
it.
Example 3. Trivially S = R™ is winning.

In the first theorem, we want to show a more interesting example of a winning
set.

Before doing so, we want to state two properties of winning sets which we
will not proof:

Theorem 4. The Hausdorff dimension of a winning set is mazimal.

Theorem 5. The image by a C'-diffeomorphism of a winning set is again a
winning st.



Theorem 6 (Schmidt, 1966). The set S := {z € R such that Ie(x) > 0 :

llgz|| > %Vq € N} (i.e. the set of badly approzimable numbers) is winning.

Proof. We can restrict ourselves to the unit interval [0, 1]. Indeed since o, 8 < 1,

there exists n,a,l € Z such that p(B,,) <1 and B, C [a+ {,a+1+ 7]. We saw

that an irrational number is badly approximable if and only if the coefficients of

its continued fraction are bounded. Thus we can construct a bijection between

the badly approximable numbers in the unit interval and [a + %, a+1+ %]
Since 0 < a < % and 0 < 8 < 1, we have that af < % Thus

R:=(af)™ ' >2
For all n € Z>o we define

Qn:{s where ged(p,q) =1 - R'T §q<R”772} cQ

Note that if n < 2 then %’2 < 0, thus R < 1 and therefore Q¢ = Q1 =

Q2 = (). The sets @, are disjoint and Q = U2 ;Q,,.
Let % #+ % € @,. Note that |pg’ — p’g| has to be a nonzero integer, thus
lpg’ — p'q| > 1. Hence
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For % € Q,, we define the dangerous interval as follows:

A(g) ={ze0,1]:|z— §| <0R™™}

where 0 < § < 1 depends on a and on the first move of B and will be
specified later.

Note that the dangerous interval of a fraction is either "in the middle of”
the unit interval or at its boarder. (See figure 1.)

Figure 1: Two possibilities for the dangerous interval

Our goal is to show that there exists a strategy for A such that for all n € N
and V% € Q.,, we have
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This implies that z € NP2, A, satisfies for all p,q € Z that |z — B[ > 6R™".
Thus z is badly approximable, i.e. z € Bad(1).

Let By C [0,1] be any closed ball. Set § := p(By)(3 — )

We define A,, inductively. Thus assume that for all j < n A; is a closed
interval such that equation (2) holds. If B, N A(Z) = 0, then A can choose
any closed interval of B,, with diameter ap(B,,) Otherwise we claim that there
exists a unique point % € @,, such that A(%) intersects B,,. Indeed assume
there are £ 5 2—: € Qn and z, 2" such that v € A(X) N B, and 2’ € A(Z—:) N B,.
Then
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where (a) uses the triangle inequality, (b) follows since z,2" € A() and z,2" €
B, C [0,1], (c) uses the definition of §, (d) follows since p(Bp) < 1and 0 < a < 3
and (e) since R > 2. But |£ — Z—:| < R™"*2 contradicts equation (1) and thus

proves the claim.
Therefore it suffices to consider two cases

1. The dangerous A(%) divides B,, in two intervals as in the first diagram
of figure 1.

Note that the diameter of B, is («8)"p(Bg) = R~ "p(By). The larger of
both intervals has length bigger or equal than

5 0(B) = p(A(E2)) = 5 (p(B,) — 26R°)
= S (0(Ba) ~ 2R p(Bo) (5 — @) = 5(p(Bn) — (1 - 20)p(By))

= ap(By)

2. The dangerous A(£2) does not divide [0,1] as in the second diagram of
figure 1.
Then it is trivially possible to choose a closed interval A4,, C B, \ A(%)
of length ap(By).

Thus we found a strategy such that condition (2) holds. O

Note that we proved a stronger statement than the theorem: We did not
show that there is some choice of « such that the set Bad(1l) is winning, we
showed that it is winning for any choice of «.



Theorem 4 Together with theorem 6 imply Jarnik’s theorem.
In the second theorem we want to observe how the intersection of winning
sets behave.

Theorem 7. The intersection of countably many a-winning sets is a-winning.

Before we can to prove this theorem, we need to formalize the notation of a
winning strategy.

Let S be an «o-winning set. Fix 0 < f < 1. Then we can find func-
tions fo, f1, f2, f3,... such that for i € N, f; takes as arguments closed balls
By, Bi, ..., B; where p(B;) = (af8)?p(By) and By D By D ... D B;. The image
of fi(By,-.., B;) is a closed ball of diameter a(af3)" contained in B;. Moreover
for A; := fi(Bo, ..., B;) we have N, A; € S. We call such a strategy a (o, 3;.5)-
winning strategy. Thus the n’th move of A corresponds to the function f,_;.
(Note that for a given set, there might be several winning strategies and thus
several sequences of functions {f;}; .)

Proof. Fix 0 < § < 1. Note that indepedant of A’s strategy, in his n’th move B
always chooses a ball B,,_; of diameter Sp(A,_2). Let Sy, S1, 52, ... be countably
many o-winning sets. Define S := N;=1.5;. We want to show that S is a-
winning.

We first want to make sure that the intersection of sets chosen by A is
contained in S;. For this purpose we assume, that A can only choose her
first, third, fifth, ... movement. Assume A made a choice for the set Ay such
that p(Ag) = ap(Bp). What happens between the first and the third move
of A? B chooses a closed ball B; of diameter Sp(Ap), then we assume that a
closed ball A; of diameter ap(Bi) is chosen (after some yet unknown rule) and
then B chooses again a closed ball By of diameter Sp(A;) = Bafp(A4y). More
generally, if for some odd n A choose a set A, 1 then B, _1);2 has diameter
BaBp(Ay). Thus to ensure that NSy A, € S1, A should chose a (a, faf3; S)-
winning strategy.

Now we want to improve the strategy such that N32,A,, € S,. For the first,
third, fifth,... move, A adopts the rule described above and we want to find a
rule for the second, sixth, tenth,... move. Using a similar reasoning as above, we
find that if A chose a ball A, for n =2 [4], then the diameter of B, _1);4
is B(aB)3. Thus A should play according to a (a, B(af3)3; So)-winning strategy.

More generally, if & = 2!=1[2] then A plays with a (a, 5(045)21*1; S;)-winning
strategy to enforce that N2, A, € S; and thus N7, A4, € S.

Formally we have: For [ = 0,1,2, ..., let f., f1. fi... be an (o, B(aB)% ~1; S5)-
winning strategy.

We want to define a strategy fo, f1, fo,... for S. Let k € {0,1,2,...}. For
kE+1=2"12 and k+1=2""1 + (¢t — 1)2! Set

Ak = fk(Bla ceey Bk) = ftl(BQt—l,BQt—l_;’_Ql, ceey B2t71+(t_1)21)
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