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Notation 1. For any set X ⊂ Rn we denote with ρ(X) its diameter, i.e.
ρ(X) = max{d(x, y)|x, y ∈ X}.

Ayesha (A) and Bhupen (B) are playing a game together. The game has the
following rules:

• They fix m ∈ N>0.

• A chooses a number 0 < α < 1
2 and B chooses a number 0 < β < 1.

• B chooses a closed ball B0 ⊂ Rm.

• A chooses a closed ball A0 ⊂ B0 such that ρ(A0) = αρ(B0)

• B chooses a closed ball B1 ⊂ A0 such that ρ(B1) = βρ(A0)

• Now A and B play alternatively: If it is A’s turn, she chooses a closed ball
An ⊂ Bn such that ρ(An) = αρ(Bn) If it is B’s turn, he chooses a closed
ball Bn ⊂ An−1 such that ρ(Bn) = βρ(An−1)

This game is called Schmidt’s game after its inventor.

Definition 2. A set S ⊂ Rm is called (α, β)-winning if A can play in such a
way that the unique intersection point ∩∞n=0An = ∩∞n=0Bn ∈ S regardless of how
B is playing. A set is called α-winning if it is (α, β)-winning for all β ∈ (0, 1)
and it is called winning if it is α-winning for some α.

Informally B tries to stay away from the target S whilst A tries to land on
it.

Example 3. Trivially S = Rm is winning.

In the first theorem, we want to show a more interesting example of a winning
set.

Before doing so, we want to state two properties of winning sets which we
will not proof:

Theorem 4. The Hausdorff dimension of a winning set is maximal.

Theorem 5. The image by a C1-diffeomorphism of a winning set is again a
winning st.
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Theorem 6 (Schmidt, 1966). The set S := {x ∈ R such that ∃c(x) > 0 :

‖qx‖ > c(x)
q ∀q ∈ N} (i.e. the set of badly approximable numbers) is winning.

Proof. We can restrict ourselves to the unit interval [0, 1]. Indeed since α, β < 1,
there exists n, a, l ∈ Z such that ρ(Bn) < 1 and Bn ⊂ [a+ 1

l , a+ 1 + 1
l ]. We saw

that an irrational number is badly approximable if and only if the coefficients of
its continued fraction are bounded. Thus we can construct a bijection between
the badly approximable numbers in the unit interval and [a+ 1

l , a+ 1 + 1
l ].

Since 0 < α < 1
2 and 0 < β < 1, we have that αβ < 1

2 . Thus

R := (αβ)−1 > 2

For all n ∈ Z≥0 we define

Qn = {p
q

where gcd(p, q) = 1 : R
n−3
2 ≤ q < R

n−2
2 } ⊂ Q

Note that if n ≤ 2 then n−2
2 ≤ 0, thus R

n−2
2 ≤ 1 and therefore Q0 = Q1 =

Q2 = ∅. The sets Qn are disjoint and Q = ∪∞n=3Qn.

Let p
q 6=

p′

q′ ∈ Qn. Note that |pq′ − p′q| has to be a nonzero integer, thus

|pq′ − p′q| ≥ 1. Hence

|p
q
− p′

q′
| = |pq

′ − p′q
qq′

| ≥ 1

|qq′|
>

1

(R
n−2
2 )

2 = R−n+2 (1)

For p
q ∈ Qn we define the dangerous interval as follows:

∆(
p

q
) := {x ∈ [0, 1] : |x− p

q
| < δR−n}

where 0 < δ < 1 depends on α and on the first move of B and will be
specified later.

Note that the dangerous interval of a fraction is either ”in the middle of”
the unit interval or at its boarder. (See figure 1.)

∆(p
q )

0 1
p
q

∆(p
q )

0 1
p
q

Figure 1: Two possibilities for the dangerous interval

Our goal is to show that there exists a strategy for A such that for all n ∈ N
and ∀pq ∈ Qn, we have

An ∩∆(
p

q
) = ∅ (2)

2



.
This implies that x ∈ ∩∞n=0An satisfies for all p, q ∈ Z that |x− p

q | ≥ δR
−n.

Thus x is badly approximable, i.e. x ∈ Bad(1).
Let B0 ⊂ [0, 1] be any closed ball. Set δ := ρ(B0)( 1

2 − α)
We define An inductively. Thus assume that for all j < n Aj is a closed

interval such that equation (2) holds. If Bn ∩ ∆(p
q ) = ∅, then A can choose

any closed interval of Bn with diameter αρ(Bn) Otherwise we claim that there
exists a unique point pn

qn
∈ Qn such that ∆(pn

qn
) intersects Bn. Indeed assume

there are p
q 6=

p′

q′ ∈ Qn and x, x′ such that x ∈ ∆(p
q ) ∩Bn and x′ ∈ ∆(p′

q′ ) ∩Bn.
Then

|p
q
− p′

q′
| = |p

q
− x+ x− x′ + x′ − p′

q′
|

(a)

≤ |p
q
− x|+ |x− x′|+ |x′ − p′

q′
|
(b)

≤ 2δR−n + 1

(c)
= 2ρ(B0)(

1

2
− α)R−n + 1

(d)

≤ R−n + 1
(e)

≤ R−n+2

(3)

where (a) uses the triangle inequality, (b) follows since x, x′ ∈ ∆(p
q ) and x, x′ ∈

Bn ⊂ [0, 1], (c) uses the definition of δ, (d) follows since ρ(B0) ≤ 1 and 0 < α < 1
2

and (e) since R > 2. But |pq −
p′

q′ | ≤ R−n+2 contradicts equation (1) and thus
proves the claim.

Therefore it suffices to consider two cases

1. The dangerous ∆(pn

qn
) divides Bn in two intervals as in the first diagram

of figure 1.

Note that the diameter of Bn is (αβ)nρ(B0) = R−nρ(B0). The larger of
both intervals has length bigger or equal than

1

2
(ρ(Bn)− ρ(∆(

pn
qn

))) =
1

2
(ρ(Bn)− 2δR−n)

=
1

2
(ρ(Bn)− 2R−nρ(B0)(

1

2
− α)) =

1

2
(ρ(Bn)− (1− 2α)ρ(Bn))

= αρ(Bn)

2. The dangerous ∆(pn

qn
) does not divide [0, 1] as in the second diagram of

figure 1.

Then it is trivially possible to choose a closed interval An ⊂ Bn \∆(pn

qn
)

of length αρ(B0).

Thus we found a strategy such that condition (2) holds.

Note that we proved a stronger statement than the theorem: We did not
show that there is some choice of α such that the set Bad(1) is winning, we
showed that it is winning for any choice of α.
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Theorem 4 Together with theorem 6 imply Jarnik’s theorem.
In the second theorem we want to observe how the intersection of winning

sets behave.

Theorem 7. The intersection of countably many α-winning sets is α-winning.

Before we can to prove this theorem, we need to formalize the notation of a
winning strategy.

Let S be an α-winning set. Fix 0 < β < 1. Then we can find func-
tions f0, f1, f2, f3, ... such that for i ∈ N, fi takes as arguments closed balls
B0, B1, ..., Bi where ρ(Bj) = (αβ)jρ(B0) and B0 ⊃ B1 ⊃ ... ⊃ Bi. The image
of fi(B0, ..., Bi) is a closed ball of diameter α(αβ)i contained in Bi. Moreover
for Ai := fi(B0, ..., Bi) we have ∩∞i=1Ai ∈ S. We call such a strategy a (α, β;S)-
winning strategy. Thus the n’th move of A corresponds to the function fn−1.
(Note that for a given set, there might be several winning strategies and thus
several sequences of functions {fi}i .)

Proof. Fix 0 < β < 1. Note that indepedant of A’s strategy, in his n’th move B
always chooses a ball Bn−1 of diameter βρ(An−2). Let S0, S1, S2, ... be countably
many α-winning sets. Define S := ∩j=1Sj . We want to show that S is α-
winning.

We first want to make sure that the intersection of sets chosen by A is
contained in S1. For this purpose we assume, that A can only choose her
first, third, fifth, ... movement. Assume A made a choice for the set A0 such
that ρ(A0) = αρ(B0). What happens between the first and the third move
of A? B chooses a closed ball B1 of diameter βρ(A0), then we assume that a
closed ball A1 of diameter αρ(B1) is chosen (after some yet unknown rule) and
then B chooses again a closed ball B2 of diameter βρ(A1) = βαβρ(A0). More
generally, if for some odd n A choose a set An−1 then B(n−1)+2 has diameter
βαβρ(An). Thus to ensure that ∩∞n=0An ∈ S1, A should chose a (α, βαβ;S1)-
winning strategy.

Now we want to improve the strategy such that ∩∞n=0An ∈ S2. For the first,
third, fifth,... move, A adopts the rule described above and we want to find a
rule for the second, sixth, tenth,... move. Using a similar reasoning as above, we
find that if A chose a ball An−1 for n ≡ 2 [4], then the diameter of B(n−1)+4

is β(αβ)3. Thus A should play according to a (α, β(αβ)3;S2)-winning strategy.

More generally, if k ≡ 2l−1[2l] then A plays with a (α, β(αβ)2
l−1;Sl)-winning

strategy to enforce that ∩∞n=0An ∈ Sl and thus ∩∞n=0An ∈ S.

Formally we have: For l = 0, 1, 2, ..., let f l0, f
l
1, f

l
2... be an (α, β(αβ)2

l−1;S2)-
winning strategy.

We want to define a strategy f0, f1, f2, ... for S. Let k ∈ {0, 1, 2, ...}. For
k + 1 ≡ 2l−1[2l] and k + 1 = 2l−1 + (t− 1)2l Set

Ak := fk(B1, ..., Bk) = f lt(B2t−1 , B2t−1+2l , ..., B2t−1+(t−1)2l)
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