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1 Convergents as best approximations

Recall the following definition.

Definition 1.1. If x = [a0; a1, a2, . . . ] is a continued fraction of x, then the
rational number

pn
qn

= [a0; a1, . . . , an] (n ≥ 0)

is called the n-th convergent to x.

Example 1.2. Consider x = π. We have seen in the first talk that the first
convergent to π is p1

q1
= 22

7 ≈ 3.142. We notice that two digits after the decimal
point are already correct. In order to get this level of precision by cutting of the
decimal expansion, we would have 3.14 = 314

100 = 157
50 . Note that the numbers 22

and 7 are much smaller than 157 and 50, but give almost the same precision.
This is an indicator that convergents are very good approximations.

Our goal is not only to show that the convergents are very good approximations,
but in fact the best approximations. But first, we need to define the notion of
best approximation.

Definition 1.3. Let x ∈ R. We define the distance of x to the nearest integer
by

‖x‖ = min{|n− x| : n ∈ Z}.

Remark 1.4. The distance to the nearest integer ‖·‖ does not define a norm,
since it is not homogeneous. For example:

∥∥∥∥1

2
· 2

3

∥∥∥∥ =

∥∥∥∥1

3

∥∥∥∥ =
1

3
6= 1

6
=

1

2
· 1

3
=

∣∣∣∣12
∣∣∣∣ ·∥∥∥∥1

3

∥∥∥∥ .
Definition 1.5. Let x ∈ R. An integer q > 0 is called a best approximation to
x if

∀q′ ∈ N : q′ < q =⇒ ‖q′a‖ > ‖qa‖.
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We can now state the main Theorem of this section.

Theorem 1.6. Let x ∈ R \Q. An integer q > 0 is a best approximation to x if
and only if q = qn (the denominator of the n-th convergent) for some n ≥ 1.

In order to prove Theorem 1.6, we need the following Lemma:

Lemma 1.7. Let pn
qn

be the convergents to a real x and define Dn = qnx − pn
for all n ≥ 0.
Now let n ≥ 1 be fixed. Then for all pairs of integers p and q with 0 < q ≤ qn
we have

|qx− p| = |u||Dn|+|v||Dn−1| ,

where

u = (−1)n+1 det

(
p pn−1
q qn−1

)
and v = (−1)n+1 det

(
pn p
qn q

)
uniquely solve the following system of linear equations:

{
p = upn + vpn−1

q = uqn + vqn−1

Furthermore: u and v are integers, uv ≤ 0 and if q < qn, then v 6= 0.

A proof of Lemma 1.7 can be found in [1]. However, we will now prove Theorem
1.6.

Proof (Theorem 1.6). We first show that the denominator of any convergent is
a best approximation. If qn = 1, then qn is trivially a best approximation, so we
can assume that qn > 1 and consider an integer q with 0 < q < qn. Let p ∈ Z
such that‖qx‖ = |qx− p|. By the Lemma, there are integers u and v with v 6= 0
such that

‖qx‖ = |qx− p|
= |u||Dn|+|v||Dn−1|
≥|Dn−1| (1)

= |qn−1x− pn−1|
=‖qn−1x‖ .

The last inequality follows from the following observation:

Recall that
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∣∣∣∣x− pn−1
qn−1

∣∣∣∣ < 1

qnqn−1
,

and therefore |qn−1x− pn−1| < 1
qn
≤ 1

2 , so pn−1 is the closest integer to qn−1x.

Similarly, |qnx− pn| =‖qnx‖ .

Before we continue, let us recall some other facts:

(i) qn+1 = an+1qn + qn−1 ≥ qn + qn−1.

(ii) 1
qn(qn+qn+1)

<
∣∣∣x− pn

qn

∣∣∣ ≤ 1
qnqn+1

< 1
q2n+1

.

Combining the results above with these two facts yields

‖qnx‖ = |qnx− pn| ≤
1

qn+1
≤ 1

qn + qn−1
< |qn−1x− pn−1| ≤‖qx‖ .

Therefore, the denominator of any convergent is a best approximation.

For the converse direction, assume that an integer q > 0 is a best approximation
with qn−1 < q < qn for some n. By (1), we get ‖qx‖ ≥ ‖qn−1x‖. However, by
the definition of best approximation, we also know that ‖qx‖ < ‖qn−1x‖. We
have reached a contradiction and the Theorem is proved.

Another Theorem that illustrates how well irrationals can be approximated by
convergents, is the following due to Legendre.

Theorem 1.8 (Legendre). Let x ∈ R \Q, and let p and q be corpime integers
(q > 0) with

∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

2q2
.

Then q is a best approximation to x and therefore the denominator of a conver-
gent.

Proof. Take any integer q′ such that 0 < q′ < q, and pick p′ ∈ Z such that∣∣q′x− p′∣∣ =
∥∥q′x∥∥. Since p and q are coprime, we know that p′

q′ 6=
p
q . Therefore

∣∣∣∣p′q′ − p

q

∣∣∣∣ =

∣∣∣∣p′q − pq′qq′

∣∣∣∣ ≥ 1

qq′
,

and hence, using the triangle inequality:

∣∣∣∣x− p′

q′

∣∣∣∣ ≥ ∣∣∣∣p′q′ − p

q

∣∣∣∣−∣∣∣∣x− p

q

∣∣∣∣ ≥ 1

qq′
− 1

2q2
>

1

2qq′
.
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We conclude that

∥∥q′x∥∥ =
∣∣q′x− p′∣∣ > 1

2q
≥|qx− p| ≥‖qx‖ .

2 Hurwitz’s Theorem

In this section, we treat a famous Theorem by Hurwitz that gives a bound
to how well irrationals can be approximated (by convergents). In the proof of
Hurwitz’ Theorem, we will also see exactly for which number this bound is sharp.

Theorem 2.1 (Hurwitz, 1891).

(i) For all x ∈ R \ Q there are infinitely many pairs of integers p and q with
q > 0 such that

∣∣∣∣x− p

q

∣∣∣∣ < 1√
5q2

. (2)

(ii) Furthermore, the constant 1√
5

is optimal. This means, that for (
√

5+ε)−1,

there are irrationals x ∈ R \ Q such that the inequality (2) only holds for
finitely many pairs of integers.

Proof. (i) We show that at least one out of any three consecutive convergents
satisfies (2). Let n ≥ 2 and assume the contrary, i.e. assume that

∣∣∣∣∣x− pn−j
qn−j

∣∣∣∣∣ ≥ 1√
5q2n−j

, j = 0, 1, 2.

Using the fact that |pnqn−1 − qnpn−1| =
∣∣(−1)n+1

∣∣ = 1, we get

1

qnqn−1
=
|pnqn−1 − qnpn−1|

|qnqn−1|
=

∣∣∣∣pnqn − pn−1
qn−1

∣∣∣∣
=

∣∣∣∣pnqn − x
∣∣∣∣+

∣∣∣∣x− pn−1
qn−1

∣∣∣∣
≥
q2n−1 + q2n√

5q2n−1q
2
n

.

Multiplying this inequality by (
√

5q2n) yields
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√
5
qn
qn−1

≥ 1 +
q2n
q2n−1

.

By rearranging the terms and introducing the variable λn = qn
qn−1

, we can

rewrite the above inequality to get

λ2n −
√

5λn + 1 ≤ 0.

Hence we find that λn ≤ 1+
√
5

2 (golden ratio), and since λn = qn
qn−1

is a

rational number, this inequality is strict, so λn <
1+
√
5

2 . Analogously, we

also get λn−1 <
1+
√
5

2 .
By fact (i) recalled in the proof of Theorem 1.6, we get qn ≥ qn−1 + qn−2,
and hence λn ≥ 1 + λ−1n−1. Therefore

1 +
√

5

2
> λn ≥ 1 + λ−1n−1 > 1 +

1
1+
√
5

2

=
1 +
√

5

2
,

and a contradiction has been reached.

(ii) We show that if we replace 1√
5

by 1√
5+ε

for some ε > 0, there are some

irrational numbers for which the inequality (2) fails to be true for infinitely
many pairs of integers p and q.

In fact, we prove that it fails for the golden ratio α1 := 1+
√
5

2 .
Note that the golden ratio is a root of the polynomial

f(t) = t2 − t− 1 = (t− α1)(t− α2),

where α2 = 1−
√
5

2 .

By assumption, there is a sequence of rational numbers (pkqk )k≥1, such that

∀k ≥ 1 :

∣∣∣∣α1 −
pk
qk

∣∣∣∣ < 1

(
√

5 + ε)q2k
.

Therefore we get:

∣∣∣∣α2 −
pk
qk

∣∣∣∣ ≤|α2 − α1|+
∣∣∣∣α1 −

pk
qk

∣∣∣∣
<
√

5 +
1

(
√

5 + ε)q2k

<
√

5 + ε, for all k sufficiently large.
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Consequently,

∣∣∣∣f(
pk
qk

)

∣∣∣∣ =

∣∣∣∣pkqk − α1

∣∣∣∣∣∣∣∣pkqk − α2

∣∣∣∣
<

√
5 + ε

(
√

5 + ε)q2k
, for all k sufficiently large

=
1

q2k
.

Therefore, for all sufficiently large k, we have
∣∣∣q2kf(pkqk )

∣∣∣ < 1. We also

know that
∣∣∣q2kf(pkqk )

∣∣∣ > 0, since qk 6= 0 and both roots of f are irrational.

However,

∣∣∣∣q2kf(
pk
qk

)

∣∣∣∣ =

∣∣∣∣∣q2k(
p2k
q2k
− pk
qk
− 1)

∣∣∣∣∣ =
∣∣∣p2k − pkqk − q2k∣∣∣ ∈ Z,

contradicting 0 <
∣∣∣q2kf(pkqk )

∣∣∣ < 1.

3 Lagrange spectrum

Definition 3.1. For a real number x, define ν(x) = lim inf
q→∞

q‖qx‖.

Remark 3.2. By Hurwitz’ Theorem 2.1, we know that ν(x) ∈ [0, 1√
5
] and

ν( 1+
√
5

2 ) = 1√
5
. Furthermore, it can be shown that ν(x) = ν(y) for any two

equivalent numbers x and y.

Theorem 3.3 (Markov). There exists a sequence

µ1 =
1√
5
> µ2 =

1

2
√

2
> µ3 =

5√
221

> µ4 > . . .

with lim
n→∞

µn = 1
3 , such that for all µ > 1

3 there exists x ∈ R with ν(x) = µ if

and only if µ = µk for some k ≥ 1.
Furthermore, for each k ≥ 1 there is only a finite number of equivalence classes
of x with ν(x) = µk, and there are uncountably many x ∈ R with ν(x) = 1

3 .

Definition 3.4. The set L = {ν(x) : x ∈ R} ⊂ [0, 1√
5
] is called the Lagrange

spectrum.
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By Theorem 3.3, we see that L ∩ ( 1
3 ,

1√
5
] = {µ1, µ2, . . . } is discrete. However,

L \ ( 1
3 ,

1√
5
] is not discrete; Marshall Hall proved in 1947 that there exists c > 0

such that [0, c] ⊂ L.

In fact, in 1975 Freiman determined max{c > 0 : [0, c] ⊂ L}. It is given
by

F =
491993569

2221564096 + 283748
√

462
= 0.220856 . . .

Definition 3.5. F−1 = 4.527829 . . . is called Freiman’s constant.

In conclusion, L ∩ ( 1
3 ,

1√
5
] = {µ1, µ2, . . . } (discrete) and L ∩ [0, F ] = [0, F ]

(continuous) are well-understood. However, the region L ∩ (F, 13 ] is a little
chaotic. For example, Hightower proved in 1970 that there are countably many
disjoint intervals Ik ⊂ (F, 13 ], such that L ∩ Ik = ∅ for all k, but there exists a
point x ∈ L between any two intervals Ik1 and Ik2 . Furthermore, it is known
that L ∩ (F, 13 ] has a fractal structure.
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