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Introduction

This paper covers most of the material of sections 10−13 of [Spr17]. We start by assigning a geodesic to each in-
definite binary quadratic form and establishing a result about the signed distance of a horocycle and a geodesic.
Afterwards, we turn towards hyperbolic triangles whose vertices are ideal points and introduce the modular
torus. After having established a connection between ideal triangulations of the modular torus and Markov
triples, we present the solution and an application of a geometric optimization problem.

We refer to [Yan20] for the definitions of objects like isometries of the hyperbolic plane, hyperbolic distance or
horocycles. A detailed discussion of the isometries of the hyperbolic plane and the hyperbolic distance can be
found in [And05].

The majority of the figures of this paper have been created using GeoGebra (see[Arn]).

I would like to thank Dr. Paloma Bengoechea for supervising this paper and especially for her helpful explana-
tions concerning the proof of Proposition 12.1 of [Spr17].

1 Geodesics and indefinite binary quadratic forms

Definition 1.1
We assign to every indefinite binary quadratic form f(x, y) = ax2 + bxy + cy2 with a, b and c ∈ R the geodesic
connecting the zeros of the polynomial f(x, 1) = ax2 + bx+ c and call this geodesic g(f).

Remark • If a 6= 0, then f(x, 1) has two distinct real roots x1,2 = −b±
√
b2−4ac

2a because b2 − 4ac > 0 and
g(f) is a euclidean half circle with origin on the real axis.

• If a = 0, then we consider − cb and ∞ as two roots of f(x, 1) and g(f) is a vertical euclidean line.

Example
Let f(x, y) = x2 + 4xy + 3y2. f is an indefinite quadratic form because disc(f) = 16 − 12 = 4 > 0. The zeros
of the polynomial f(x, 1) = x2 + 4x + 3 are −3 and −1. Therefore, g(f) is the euclidean half circle with origin
−2 connecting −3 and −1.

Lemma 1.1
The map g that assigns to each indefinite binary quadratic form f the geodesic g(f) is surjective and many-to-
one. It holds:

g(f1) = g(f2) ⇐⇒ f1 = αf2 for some α ∈ R \ {0}.

Lemma 1.2

If A =

(
α β
γ δ

)
∈ GL2(R) and f(x, y) = ax2 + bxy + cy2 is an indefinite binary quadratic form, then

g(f ◦A−1) = MA(g(f)),

i.e. the geodesic assigned to the binary quadratic form

(f ◦A−1)(x, y) = f(
δx− βy
αδ − βγ

,
−γx+ αy

αδ − βγ
)

is the image of g(f) under the isometry

MA(z) =
αz + β

γz + δ
.

Proof. First, we determine the zeros of the polynomial (f ◦A−1)(x, 1).

(f ◦A−1)(x, y) = f(
δx− βy
αδ − βγ

,
−γx+ αy

αδ − βγ
)

= a(
δx− βy
αδ − βγ

)2 + b
δx− βy
αδ − βγ

−γx+ αy

αδ − βγ
+ c(

−γx+ αy

αδ − βγ
)2

=
(aδ2 − bγδ + cγ2)x2 + (bαδ + bβγ − 2aβδ − 2cαγ)xy + (aβ2 − bαβ + cα2)y2

(αδ − βγ)2

This implies that the zeros of (f ◦A−1)(x, 1) are

y1,2 =
2aβδ + 2cαγ − bαδ − bβγ ± (αδ − βγ)

√
b2 − 4ac

2(aδ2 − bγδ + cγ2)
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Now, we calculate the image of the zeros

x1,2 =
−b±

√
b2 − 4ac

2a

of f(x, 1) under MA.

MA(xi) =
αxi + β

γxi + δ

=
(−1)i+1α

√
b2 − 4ac− bα+ 2aβ

(−1)i+1γ
√
b2 − 4ac− bγ + 2aδ

=
2aβδ + 2cαγ − bαδ − bβγ + (−1)i+1(αδ − βγ)

√
b2 − 4ac

2(aδ2 − bγδ + cγ2)

= yi ∀ i ∈ {1, 2}.

Since the image of a geodesic under MA is a geodesic, the result follows.

We refer to Definition 1.9 of [Yan20] for the definition of the signed distance between a geodesic and a horocycle.

Proposition 1.1
Let f = ax2 + bxy + cy2 be an indefinite binary quadratic form and let (p, q) ∈ R2 \ {(0, 0)}.
The signed distance of the horocycle h(p, q) and the geodesic g(f) is

d(h(p, q), g(f)) = log
2|f(p, q)|√

disc(f)
. (1)

Proof. First, we prove the result for some special cases. Afterwards we reduce the general case to these special
cases. We will use this strategy to prove several other results.

1. If q = 0 and a = 0, i.e. h(p, q) is the horocycle at ∞ at height p2 and g(f) is a euclidean vertical line:

Since g(f) ends in the center of h(p, q), we have:

log
2|f(p, q)|√

disc(f)
= log(0) = d(h(p, q), g(f)) = −∞

because f(p, q) = q(bp+ cq) = 0.

2. If q = 0 and a 6= 0, i.e. h(p, q) is the horocycle at ∞ at height p2 and g(f) is a euclidean half circle with
origin on the real axis:

We have:

δ :=
1

2
(
−b+

√
b2 − 4ac

2a
− −b−

√
b2 − 4ac

2a
) =

√
b2 − 4ac

2a
=
p2
√

disc(f)

2|f(p, q)|

is half of the euclidean distance between the two zeros x1,2 of f(x, 1).

Since d(h(p, q), g(f)) is the distance of the point x1+x2

2 + δi to h(p, q) taken positive if p2 ≥ δ and taken
negative if p2 < δ we get:

d(h(p, q), g(f)) = log
p2

δ
= log

2|f(p, q)|√
disc(f)

3. If q 6= 0, i.e. h(p, q) is the horocycle at p
q with euclidean diameter 1

q2 :

Define A =

(
p 1−p2

q

−q p

)
.

It holds:

(a) det(A) = 1

(b) A

(
p
q

)
=

(
1
0

)

2



By the second special case, we get:

d(h(p, q), g(f)) = d(MA(h(p, q)),MA(g(f)) = d(h(1, 0), g(f ◦A−1)

= log
2|(f ◦A−1)(1, 0)|√

disc(f ◦A−1)
= log

2|ap2 + bpq + cq2|
disc(f)

= log
2|f(p, q)|√

disc(f)

Lemma 1.3
If f(x, y) = x2−xy−y2 and (p, q) ∈ Z2 \{(0, 0)} is such that h(p, q) and g(f) intersect, then the signed distance
of h(p, q) and g(f) satisfies

d(h(p, q), g(f)) = log(
2√
5

).

Proof. Define A =

(
p 1−p2

q

−q p

)
.

We have:

z1,2 := MA(
1±
√

5

2
) = zeros of (f ◦A−1)(x, 1) =

2(1− p2)pq + 2pq + 2p2 − 1±
√

5

2(p2 − pq + q2)

Furthermore:

• The image of g(f) under MA is the geodesic connecting z1 and z2, i.e. the euclidean half circle with origin

m := z1+z2
2 and radius r := |z1−z2|

2 .

• The image of the horocycle h(p, q) under MA is the horocycle at ∞ at height 1.

Since g(f) and h(p, q) intersect, MA(g(f)) and h(1, 0) intersect as well.

Therefore:

r =

√
5

2|p2 − pq + q2|
≥ 1

which implies that
|p2 − pq + q2| = 1.

We conclude:

d(h(p, q), g(f)) = d(h(1, 0),MA(g(f))) = −d(m+ i,m+ ri) = − log(r) = log(
2√
5

)

Corollary 1.1
If f̃ is an indefinite binary quadratic form with real coefficients that is equivalent to f(x, y) = x2 − xy− y2 and
(p, q) ∈ Z2 \ {(0, 0)} is such that h(p, q) and g(f̃) intersect, then the signed distance of h(p, q) and g(f̃) satisfies

d(h(p, q), g(f̃)) = log(
2√
5

).

Proof. Let a, b, c, d ∈ Z be such that f̃(ax+ by, cx+ dy) = f(x, y) and |ad− bc| = 1.

We have:

f(x, y) = (f̃ ◦A−1)(x, y) where A =

(
d −b
−c a

)
.

Since h(p, q) and g(f̃) intersect, MA(h(p, q) and MA(g(f̃)) intersect as well.

By Lemma 1.2 and Lemma 1.3 it follows:

d(h(p, q), g(f̃)) = d(MA(h(p, q),MA(g(f̃))) = d(MA(h(p, q), g(f)) = log(
2√
5

)
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2 Decorated Ideal Triangles

Definition 2.1
An ideal triangle is a closed region in the hyperbolic plane that is bounded by three geodesics (called the sides)
connecting three ideal points v1, v2 and v3 (called the vertices). We denote it by T (v1, v2, v3).

Example (Ideal triangles)

−3 −2 −1 0 1 2 3

2i

3i

i

−3 −2 −1 0 1 2 3

2i

3i

i

Lemma 2.1
For each ideal triangle T = T (v1, v2, v3) there is a hyperbolic isometry MT that maps T to T (0, 1,∞).

Proof. 1. If v1 =∞: Define

MT (z) =
v2 − v3

z − v3

2. If v2 =∞: Define

MT (z) =
z − v1

z − v3

3. If v3 =∞: Define

MT (z) =
z − v1

v2 − v1

4. Otherwise: Define

MT (z) =
(z − v1)(v2 − v3)

(z − v3)(v2 − v1)

Corollary 2.1
For any two ideal triangles T1 = T (v1, v2, v3) and T2 = T (w1, w2, w3) there exists a hyperbolic isometry MT1,T2

such that MT1,T2 maps T1 to T2.

Proof. Define
MT1,T2

= (MT2
)−1 ◦MT1

Definition 2.2
A decorated ideal triangle is an ideal triangle together with a horocycle at each vertex.

Example (Decorated ideal triangles)

−3 −2 −1 0 1 2 3

2i

3i

i

−3 −2 −1 0 1 2 3

2i

3i

i
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Definition 2.3 1. A decorated geodesic is a geodesic together with a horocycle at each end.

2. The truncated length α of a decorated geodesic is the signed distance of its two horocycles h1 = h(p1, q1)
and h2 = h(p2, q2), i.e. α = 2 log|p1q2 − p2q1| (see Definition 1.7 of [Yan20]).

3. The weight of a decorated geodesic is defined as a = eα/2, where α is the truncated length of the decorated
geodesic.

Remark (Notation)
We write the truncated lengths of the sides of a decorated triangle as a triple (α1, α2, α3) where αi is the truncated
length of the decorated geodesic consisting of the side of the decorated triangle connecting the vertices vj and vk
together with the horocycles at the vertices vj and vk, {j, k} = {1, 2, 3} \ {i} .
Similarly, we write (a1, a2, a3) for the weights of a decorated ideal triangle and use the same letters for describing
the sides of a triangle and their weights.

Lemma 2.2
Any triple (α1, α2, α3) ∈ R3 determines a decorated triangle with truncated lengths (α1, α2, α3) that is unique
up to isometry.

Proof. First, we consider the decorated triangle with vertices 0, 1, and ∞ and horocycles h1 = h(0, A), h2 =
h(B,B) and h3 = h(C, 0), where

A = exp(
α2 + α3 − α1

4
), B = exp(

α1 + α3 − α2

4
) and C = exp(

α1 + α2 − α3

4
).

Figure 1: Decorated ideal triangle

We have:

d(h2, h3) = 2 log(BC) = 2 log(exp(
α1

2
)) = α1

d(h1, h3) = 2 log(AC) = 2 log(exp(
α2

2
)) = α2

d(h1, h2) = 2 log(AB) = 2 log(exp(
α3

2
)) = α3

Now, let us consider an arbitrary decorated ideal triangle with vertices v1, v2 and v3 and horocycles h1 =
h(p1, q1), h2 = h(p2, q2) and h3 = h(p3, q3) whose truncated lengths are (α1, α2, α3).

Let M be the isometry we defined in Lemma 2.1 that maps the triangle T (v1, v2, v2) to the triangle T (0, 1,∞).
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If v1 =∞, then q1 = 0, v2 = p2
q2

, v3 = p3
q3

and M is induced by the matrix

A =

(
0 v2−v3

δ
1
δ −v3δ

)
, where δ =

√
|v2 − v3|.

Hence, by Lemma 1.6 of [Yan20], M maps

• h1 to h(0, p1δ ),

• h2 to h( q2(v2−v3
δ ), q2(v2−v3)

δ ) and

• h3 to h(p3(v2−v3)
δ , 0).

Since the truncated length of a decorated geodesic is invariant under hyperbolic isometries:

α1 = d(M(h2),M(h3)) = 2 log
|p3q2|(v2 − v3)2

δ2
= 2 log(BC)

α2 = d(M(h1),M(h3)) = 2 log
|p1p3(v2 − v3)|

δ2
= 2 log(AC)

α3 = d(M(h1),M(h2)) = 2 log
|p1q2(v2 − v3)|

δ2
= 2 log(AB)

Therefore,
p1

δ
∈ {±A}, q2(v2 − v3)

δ
∈ {±B} and

p3(v2 − v3)

δ
∈ {±C}

which implies that
M(h1) = h(A, 0), M(h2) = h(B,B) and M(h3) = h(0, C).

The cases v2 =∞, v3 =∞ and v1, v2, v3 ∈ R follow analogously.

Corollary 2.2
Any triple (a1, a2, a3) ∈ R3

>0 determines a decorated triangle with weights (a1, a2, a3) that is unique up to
isometry.

Corollary 2.3
Each decorated ideal triangle that is part of the Farey tessellation together with the Ford circles is isometric to
the decorated ideal triangle with vertices 0, 1 and ∞ and horocycles h1 = h(0, 1), h2 = h(1, 1) and h3 = h(1, 0).

Proof. The statement follows from the proof of Lemma 2.2 and the fact that each such decorated ideal triangle
has truncated lengths (0, 0, 0).

Definition 2.4
We consider a decorated ideal triangle. Its three horocycles intersect the triangle in three arcs. We denote the
hyperbolic length of the intersection of the horocycle at vertex i with the triangle by ci and refer to these lengths
as horocyclic arc lengths.

Lemma 2.3
The truncated side lengths (α1, α2, α3) of a decorated ideal triangle determine the horocyclic arc lengths (c1, c2, c3),
and vice versa, via the relation

ci =
ai
ajak

= e
1
2 (−αi−αj+αk)

where (i, j, k) is a permutation of (1, 2, 3).

Proof. We consider the decorated triangle with vertices 0, 1, and ∞ and horocycles h1 = h(0, A), h2 = h(B,B)
and h3 = h(C, 0), where

A = exp(
α2 + α3 − α1

4
), B = exp(

α1 + α3 − α2

4
) and C = exp(

α1 + α2 − α3

4
).

Recall that this decorated ideal triangle has truncated side lengths (α1, α2, α3).

As all decorated ideal triangles with truncated lengths (α1, α2, α3) are isometric to the decorated ideal triangle
we described above (see Lemma 2.2) and the length of a curve is invariant under isometries, it suffices to prove
the result for this special case.
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It holds:

c3 =

∫ 1

0

1

C2
dx =

1

C2
= e

1
2 (−α1−α2+α3) =

a3

a1a2

By Lemma 1.6 of [Yan20], the isometry MA induced by the matrix

A =

(
0 1
−1 1

)
maps

• 0 to 1

• 1 to ∞

• ∞ to 0

• h(0, A) to h(A,A)

• h(B,B) to h(B, 0)

• h(C, 0) to h(0,−C) = h(0, C)

Since isometries of the hyperbolic plane preserve the length of a curve, we get

c2 =

∫ 1

0

1

B2
dx =

1

B2
= e

1
2 (−α1+α2−α3) =

a2

a1a3
.

One obtains
c1 = e

1
2 (α1−α2−α3) =

a1

a2a3

by repeating the above argument with the isometry MB induced by the matrix

B =

(
−1 1
−1 0

)
.

Definition 2.5
A decorated ideal quadrilateral is defined analogously to a decorated ideal triangle.

A decorated ideal quadrilateral can be decomposed into two decorated ideal triangles in two ways:

Figure 2: Triangulated decorated ideal quadrilateral Figure 3: Triangulated decorated ideal quadrilateral

Lemma 2.4 (Ptolemy relation)
The six weights a, b, c, d, e, f are related by the Ptolemy relation

ef = ac+ bd.

Proof. By Lemma 2.3 it holds:
e

cd
=

a

df
+

b

cf

which implies the result.
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3 Modular Torus

Definition 3.1
The modular group is the subgroup of Isom+(H) consisting of all elements of the form

M(z) =
az + b

cz + d
, where a, b, c, d ∈ Z and ad− bc = 1.

Definition 3.2
Let G be the subgroup of the modular group generated by α(z) = z−1

−z+2
and β(z) = z+1

z+2 and let ∼ be the

equivalence relation on H2 defined by

x ∼ y ⇐⇒ ∃g ∈ G such that g(x) = y,

i.e. x ∼ y ⇐⇒ x and y are on the same orbit of the group action

φ : G ×H2 → H2, (

(
a b
c d

)
, x) 7→ ax+ b

cx+ d
.

The quotient space M = H2/ ∼ is called the modular torus.

Next, we collect a few facts about the modular group, the group G and the isometries of the modular torus.
More detail and some proofs can be found in [Kon].

Lemma 3.1 1. The modular group is generated by the elements

−1

z
and z + 1.

2. G is the commutator subgroup of the modular group.

3. G is a normal subgroup of the modular group with index six. The quotient group is the group of orientation
preserving isometries of the modular torus.

4. The group of isometries of the modular torus is the quotient group of the subgroup of Isom(H) consisting
of all elements of the form

M(z) =
az + b

cz + d
, where a, b, c, d ∈ Z and |ad− bc| = 1

modulo G, has 12 elements and is generated by the equivalence classes of the elements

−1

z
, z + 1 and −z̄.

Theorem 3.1
A fundamental domain of the modular torus is given by

−1 0 1

F := {z ∈ H2 : −1 ≤ Re(z) ≤ 1} \ {z ∈ H2 : |z +
1

2
| ≤ 1

2
or |z − 1

2
| ≤ 1

2
}.

Proof. The result is a consequence of Lemma 3.1 and Lemma 5 of [HT19].

8



Remark 1. It holds:
α(1) = 0, β(−1) = 0, α(∞) = −1 and β(∞) = 1

Therefore, the modular torus is a torus with one point (−1 ∼ 0 ∼ 1 ∼ ∞) removed, i.e. a once punctured
hyperbolic torus.

2. By decomposing the ideal quadrilateral with vertices −1, 0, 1 and ∞ into two ideal triangles we obtain an
ideal triangulation of the modular torus.

Definition 3.3
The modular torus together with a choice of horocycle at the cusp is called decorated modular torus.

The decorated modular torus can be viewed as two congruent decorated ideal triangles that are glued together
along their edges in a way that the horocycles fit together. In the following, we denote the weights of these two
ideal decorated triangles by (a, b, c).

Example (Decorated Modular Tori)

Figure 4: Decorated modular torus with ideal triangu-
lation

Figure 5: Decorated modular torus with ideal triangu-
lation

Lemma 3.2
The total length of the horocycle of a decorated modular torus is given by

l = 2(
a

bc
+

b

ac
+

c

ab
).

Proof. Due to Lemma 2.3, the total length of the horocyclic arcs of a decorated ideal triangle with weights
(a, b, c) is given by

a

bc
+

b

ac
+

c

ab
.

Hence,

l = 2(
a

bc
+

b

ac
+

c

ab
).

Remark
If l = 6, then the weights (a, b, c) satisfy Markov’s equation. Therefore, we consider from now on the decorated
modular torus whose horocycle has total length 6. One obtains it by gluing two decorated ideal triangles with
weights (1, 1, 1).

Lemma 3.3
If the triangulation with weights (1, 1, 1) and the decoration of the modular torus together with the horocycle of
length 6 is lifted to the hyperbolic plane, then one obtains the Farey tessellation with Ford circles.

Proof. We refer to section 3 of [Pfe15].

This means that the collection of images of the fundamental domain of the decorated modular torus with ideal
triangulation as in Figure 5 under the isometries of the hyperbolic plane that are contained in G, is the Farey
tessellation with Ford circles.
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Remark
Recall from [Bol20] the definition of Markov triples and neighbouring Markov triples. There are three involutions
σk on the set of Markov triples that map any Markov triple (a, b, c) to its neighbours:

• σ1(a, b, c) = ( b
2+c2

a , b, c)

• σ2(a, b, c) = (a, a
2+c2

b , c)

• σ3(a, b, c) = (a, b, a
2+b2

c )

The following proposition is the main result of this section and establishes a connection between Markov triples
and ideal triangulations of the decorated modular torus.

Proposition 3.1 (Markov triples and ideal triangulations) 1. A triple τ = (a, b, c) of positive integers is a
Markov triple if and only if there is an ideal triangulation of the decorated modular torus whose three edges
have weights a, b and c. This triangulation is unique up to the 12-fold symmetry of the modular torus.

2. If T is an ideal triangulation of the decorated modular torus with edge weights τ = (a, b, c), and if T ′ is
an ideal triangulation obtained from T by performing a single edge flip, then the edge weights of T ′ are
τ ′ = σkτ , with k ∈ {1, 2, 3} depending on which edge was flipped.

Proof. We only present one idea of the proof of the statement. More detail can be found in section 12 of [Spr17].

Let (a, b, c) be a Markov triple.

To obtain an ideal triangulation of the decorated modular torus with weights (a, b, c), one has to follow the
Markov tree leading from (1, 1, 1) to (a, b, c) and perform the corresponding edge flips on the projected Farey
tessellation.

As an example, we execute three edge flips to get an ideal triangulation of the decorated modular torus with
weights (2, 5, 29).

The edge a forms a diagonal of the ideal quadrilateral with vertices −1, 0, 1 and ∞ which is a fundamental
domain of the modular torus by Theorem 3.1.

Figure 6: Flip of edge a

We get by the Ptolemy relation:

(a′, b, c) = (
b2 + c2

a
, b, c) = σ1(a, b, c).

Since a = b = c = 1, we get an ideal triangulation of the decorated modular torus with weights (2, 1, 1).

Next, we want to flip edge b. Therefore, we look for an ideal quadrilateral that is a fundamental domain of the
modular torus and has the edge b as a diagonal.
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The isometry of the hyperbolic plane

β−1(z) =
2z − 1

−z + 1

sends the ideal quadrilateral with vertices −1, 0, 1 and ∞ to the ideal quadrilateral with vertices − 3
2 , −1, ∞

and −2. Hence, the ideal quadrilateral with vertices − 3
2 , −1, 1 and ∞ is a fundamental domain of the modular

torus.

Figure 7: Looking for a new ideal quadrilateral

Figure 8: Flip of edge b

We get by the Ptolemy relation:

(a, b′, c) = (a,
a2 + c2

b
, c) = σ2(a, b, c).

Since a = 2 and b = c = 1, we get an ideal triangulation of the decorated modular torus with weights (2, 5, 1).

Finally, we want to flip edge c. In order to do that, we proceed as before.

The isometry of the hyperbolic plane

(β−1 ◦ α)(z) =
3z − 4

−2z + 3

sends the ideal quadrilateral with vertices − 3
2 , −1, 1 and ∞ to the ideal quadrilateral with vertices − 17

12 , − 7
5 , −1

and − 3
2 . Hence, the ideal quadrilateral with vertices − 3

2 , − 17
12 , −1 and 1 is a fundamental domain of the modular

torus.
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Figure 9: Looking for a new decorated ideal quadrilateral

Figure 10: Magnification of the previous figure

Figure 11: Flip of edge c

We get by the Ptolemy relation:

(a, b, c′) = (a, b,
a2 + b2

c
) = σ3(a, b, c).

Since a = 2, b = 5 and c = 1, we get an ideal triangulation of the decorated modular torus with weights (2, 5, 29).
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As a final remark concerning this proof, we examine whether it makes a difference to perform the flip at edge
b, which we did above, at the geodesic connecting −1 and ∞ or at the geodesic connecting 0 and 1.

The isometry of the hyperbolic plane

β(z) =
z + 1

z + 2

sends the ideal quadrilateral with vertices −1, 0, 1 and ∞ to the ideal quadrilateral with vertices 0, 1
2 , 2

3 and 1.
Hence, the ideal quadrilateral with vertices −1, 0, 2

3 and 1 is a fundamental domain of the modular torus.

Figure 12: Flip of edge b (second version)

As above, we get an ideal triangulation of the decorated modular torus with weights (2, 5, 1).

The isometry of the modular torus that is induced by the isometry of the hyperbolic plane

M(z) =
−1

z

sends the ideal quadrilateral with vertices − 3
2 , −1, 1 and ∞ to the ideal vertices quadrilateral with vertices 2

3 ,
1, −1 and 0.

Hence, one does not necessarily get the same ideal triangulation of the modular torus if one performs a flip at
different representatives of an edge, but the two ideal triangulations are related by an isometry of the modular
torus.

4 Geodesics crossing a decorated ideal triangle

In this section we consider the following geometric optimization problem:

Given a decorated ideal triangle, find among all geodesics intersecting the sides a1 and a2, a geodesic that
maximizes the minimum of the signed distances to the three horocycles at the vertices.

Definition 4.1 1. A geodesic bisects a side of a decorated ideal triangle if it intersects the side in the point
at equal distance to the two horocycles at the ends of the side.

2. The perpendicular bisector of a side of a decorated ideal triangle is the geodesic that intersects the side in
the point at equal distance to the two horocycles at the ends of the side at right angles.

Lemma 4.1
A geodesic that bisects two sides of a decorated ideal triangle has equal signed distance to all three horocycles of
the decorated ideal triangle.

Proof. By Lemma 2.2, it suffices to consider the ideal triangle with vertices v1 = 0, v2 = 1 and v3 = ∞ and
horocycles h1 = h(0, A), h2 = h(B,B) and h3 = h(C, 0), where A,B,C ∈ R>0, and the geodesic g that bisects
the sides a1 and a2.

13



Let Q1 = 1 + γ1i be the point where g and a1 intersect and let Q2 = γ2i be the point where g and a2 intersect.

It holds:

log
C2

γ2
= logA2γ2 and log

C2

γ1
= logB2γ1

Therefore:
A2γ2

2 = C2 = B2γ2
1 (2)

Furthermore, Q1 and Q2 lie on the euclidean half circle with center

m =
1

2
(γ2

1 − γ2
2 + 1)

and radius

r =

√
1

4
(γ2

1 − γ2
2)2 +

1

2
(γ2

1 + γ2
2) +

1

4
.

This implies that
γ2

1 + (m− 1)2 = r2 = γ2
2 +m2. (3)

We define f(x, y) = x2 − 2mxy + (m2 − r2)y2.

It holds:

• disc(f) = 4r2

• f(0, A) = A2(m2 − r2) = A2γ2
2

• f(B,B) = B2 − 2mB2 + (m2 − r2)B2 = −(r2 − (1−m)2)B2 = −γ2
1B

2

Therefore:

d(h1, g) = d(h(0, A), g(f)) d(h2, g) = d(h(B,B), g(f))

= log
A2γ2

2

r
= log

B2γ2
1

r

= log
C2

r
+ log

A2γ2
2

C2
= log

C2

r
+ log

B2γ2
1

C2

= log
C2

r
+ logA2γ2 − log

C2

γ2
= log

C2

r
+ logB2γ1 − log

C2

γ1

= log
C2

r
= d(h3, g) = log

C2

r
= d(h3, g)

Corollary 4.1
A geodesic that bisects two sides of a decorated ideal triangle that is part of the Farey tessellation together with
the Ford circles has signed distance

log
2√
5

to all three horocycles.

Proof. This is a consequence of Corollary 2.3 and the proof of Lemma 4.1.

Proposition 4.1
We consider a decorated ideal triangle with weights (a1, a2, a3) ∈ R3.

1. If
a2

1 ≤ a2
2 + a2

3 and a2
2 ≤ a2

1 + a2
3, (4)

then the geodesic g bisecting the sides a1 and a2 is the unique solution of the above optimization problem.

2. If, for (j, k) ∈ {(1, 2), (2, 1)},
a2
j ≥ a2

k + a2
3, (5)

then the perpendicular bisector g̃ of the side ak is the unique solution of the above optimization problem.
In this case, the minimal distance is attained for hj and h3,

d(hj , g̃) = d(h3, g̃) =
αk
2
≤ d(hk, g̃).

14



Proof. By Lemma 2.2, it suffices to consider the ideal triangle with vertices v1 = 0, v2 = 1 and v3 = ∞ and
horocycles h1 = h(0, A), h2 = h(B,B) and h3 = h(C, 0), where A,B,C ∈ R>0.

For j ∈ {1, 2, 3} we define Pj to be the point on g that is closest to hj and denote the geodesic connecting Pj
and vj with gj . If gj is a euclidean half circle with center on the real axis, we denote its center by mj and its ra-
dius by rj . If gj is a euclidean vertical line we define mj to be the point where gj hits the real axis and set rj = 0.

It holds:

• r1 = |m1| and (m−m1)2 = r2
1 + r2 because g and g1 intersect at a right angle at P1.

• r2 = |m2 − 1| and (m−m2)2 = r2
2 + r2 because g and g2 intersect at a right angle at P2.

• r3 = 0 and m3 = m.

Therefore:

m1 =
m2 − r2

2m
and m2 =

m2 − r2 − 1

2(m− 1)
(6)

We distinguish between the following four cases:

1. P3 lies strictly between P1 and P2:

In this case, g is the unique solution of the optimization problem. By Lemma 4.1, g has equal distance to
all three horocycles. In addition, any other geodesic crossing the sides a1 and a2 also crosses the ray from
Pj to vj for at least one j ∈ {1, 2, 3}. Therefore, it is closer to at least one of the horocycles.

Figure 13: P3 lies strictly between P1 and P2

2. P1 lies strictly between P3 and P2:

In this case, the perpendicular bisector of the side a2 is the unique solution of the optimization problem.
We denote it by b2. The signed distance of b2 to the horocycles h1 and h3 is half the truncated length of
side a2. The signed distance of b2 and the h2 is larger. Any other geodesic crossing a2 is either closer to
h1 or to h3.

15



Figure 14: P1 lies strictly between P3 and P2

3. P2 lies strictly between P1 and P3:

In this case, the perpendicular bisector of the side a1 is the unique solution of the optimization problem.
We use the same arguments as in the second case.

4. P3 = P1 or P3 = P2:

If P3 = P1, then g is simultaneously the geodesic connecting Q1 and Q2 and the perpendicular bisector
of the side a2.

If P3 = P2, then g is simultaneously the geodesic connecting Q1 and Q2 and the perpendicular bisector
of the side a1.

It remains to show that the order of the points Pj on g depends on whether the inequalities (4) or (5) are
satisfied.
We define

• s1 to be the horocyclic arc of h1 between R1 and R2 and

• s2 to be the horocyclic arc of h2 between S2 and S3.

• t1 to be the horocyclic arc of h3 between T1 and T2,

• t2 to be the horocyclic arc of h3 between T2 and T3,

• u1 to be the horocyclic arc of h1 between R1 and R3 and

• u2 to be the horocyclic arc of h2 between S1 and S3.

We denote the absolute value of the hyperbolic length of the horocyclic arcs we just defined by | horocyclic arc |.

claim: |s1| = |t1|, |s2| = |t2| and |u1| = |u2|

|t1| and |t2| can be determined as follows:

|t1| =

∣∣∣∣∣
∫ m

0

1

C2
dt

∣∣∣∣∣ =
|m|
C2

and |t2| =

∣∣∣∣∣
∫ 1

m

1

C2
dt

∣∣∣∣∣ =
|1−m|
C2

The isometry 1
z̄ maps

• the horocycle h1 to the horocycle h(A, 0),
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• the geodesic g1 to the geodesic connecting 1
2m1

and ∞ and

• the side a3 to the geodesic connecting 1 and ∞.

Therefore, R1 is sent to 1
2m1

+A2i , R2 is sent to A2i and R3 is sent to 1 +A2i.

It follows by (2),(3) and (6):

|s1| =

∣∣∣∣∣
∫ 1

2m1

0

1

A2
dt

∣∣∣∣∣ =
1

2A2|m1|
and |u1| =

∣∣∣∣∣
∫ 1

1
2m1

1

A2
dt

∣∣∣∣∣ =
|2m1 − 1|
2A2|m1|

=⇒ |s1| =
|m|

A2|m2 − r2|
=
|m|
A2γ2

2

=
|m|
C2

= |t1|

The isometry 1
z̄−1 maps

• the horocycle h2 to the horocycle h(B, 0),

• the geodesic g2 to the geodesic connecting 1
2m2−2 and ∞ and

• the side a3 to the geodesic connecting −1 and ∞.

Therefore, S1 is sent to −1 +B2i , S2 is sent to B2i and S3 is sent to 1
2m2−2 +B2i.

It follows by (2),(3) and (6):

|s2| =

∣∣∣∣∣
∫ 1

2m2−2

0

1

B2
dt

∣∣∣∣∣ =
1

2B2|m2 − 1|
and |u2| =

∣∣∣∣∣
∫ 1

2m2−2

−1

1

B2
dt

∣∣∣∣∣ =
|2m2 − 1|

2B2|m2 − 1|

=⇒ |s2| =
|m− 1|

B2|(m− 1)2 − r2|
=
|m− 1|
B2γ2

1

=
|m− 1|
C2

= |t2|

and

|u1| =
|r2 −m2 +m|
A2|r2 −m2|

=
|γ2

2 +m|
A2γ2

2

=
|γ2

1 + (m− 1)2 −m2 +m|
B2γ2

1

=
|γ2

1 + 1−m|
B2γ2

1

=
|r2 −m2 +m|

B2|r2 − (m− 1)2|
= |u2|.

If P3 lies strictly between P1 and P2, then it hods:

1. c1 = |u1| − |s1|

2. c2 = |u2| − |s2|

3. c3 = |t1|+ |t2|

This implies that

2|t1| = −c1 + c2 + c3 = − a1

a2a3
+

a2

a1a3
+

a3

a1a2
=
−a2

1 + a2
2 + a2

3

a1a2a3

and

2|t2| = c1 − c2 + c3 =
a1

a2a3
− a2

a1a3
+

a3

a1a2
=
a2

1 − a2
2 + a2

3

a1a2a3
.

P3 lies strictly between P1 and P2 if and only if |t1| > 0 and |t2| > 0.

Therefore, P3 lies strictly between P1 and P2 if and only if the inequalities a2
2 + a2

3 > a2
1 and a2

1 + a2
3 > a2

2 are
satisfied.

The other cases are treated similarly.
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The last major result of this paper presents an application of Proposition 4.1 and relates hyperbolic geometry
with the theory of indefinite binary quadratic forms.

For the proof of our last theorem we need the following lemma:

Lemma 4.2
If a geodesic g = g(f), where f is an indefinite binary quadratic form, bisects two sides of a decorated ideal
triangle that is part of the Farey tessellation together with the Ford circles, then f is equivalent to an indefinite
binary quadratic form of the type

αx2 − αxy − αy2, where α ∈ R \ {0}.

Proof. By Corollary 2.3, there is an isometry M that maps g to g(f̃), where

f̃(x, y) = x2 − xy − y2

because g(f̃) bisects the sides a1 and a2 of the decorated ideal triangle with vertices 0, 1 and ∞ and horocycles
h1 = h(0, 1), h2 = h(1, 1) and h3 = h(1, 0).

Let

A =

(
a11 a12

a21 a22

)
∈ GL2(R)

be such that |det(A)| = 1 and MA = M .

Therefore,
MA(g(f)) = g(f̃),

which implies by Lemma 1.2 that
g(f) = MA−1(g(f̃)) = g(f̃ ◦A).

Hence, we get by Lemma 1.1 that

f = α(f̃ ◦A) = (αf̃) ◦A, for some α ∈ R \ {0}.

Theorem 4.1 (Korkin and Zolotarev)
Let f(x, y) = ax2 + bxy + cy2 be an indefinite binary quadratic form with real coefficients.

1. If f is equivalent to an indefinite binary quadratic form of the type

αx2 − αxy − αy2, where α ∈ R \ {0},

then

inf
(p,q)∈Z2\{(0,0)}

|f(p, q)|√
disc(f)

=
1√
5
.

2. Otherwise,

inf
(p,q)∈Z2\{(0,0)}

|f(p, q)|√
disc(f)

<
1√
5
.

Proof. 1. There is a matrix

A =

(
a11 a12

a21 a22

)
such that |det(A)| = 1 and

f(x, y) = α(a11x+ a12y)2 − α(a11x+ a12y)(a21x+ a22y)− α(a21x+ a22y)2.

It holds:
|f(x, y)|√

disc(f)
=
|α||(f̃ ◦A)(x, y)|√
α2 disc(f̃ ◦A)

where f̃(x, y) = x2 − xy − y2.

Hence, it suffices to prove the result for the case that f is equivalent to x2 − xy − y2.

We conclude the proof of the first part of the theorem by the fact that for every geodesic g there exists a
Ford circle h such that g and h intersect, by Corollary 1.1 and by Proposition 1.1.
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2. We choose an arbitrary decorated ideal triangle that is part of the Farey tessellation together with the
Ford circles such that g(f) intersects two of its sides and denote it by T .
The weights of T are given by (1, 1, 1).

By Lemma 4.2, f does not bisect two sides of T . Hence, by the first part of Proposition 4.1, the minimum
of the signed distances of g(f) and the horocycles of T is strictly smaller than the minimum of the signed
distances of the geodesic bisecting the sides a1 and a2 of T and the horocycles of T .

Therefore, Corollary 4.1 implies that the minimum of the signed distances of g(f) and the horocycles of
T is strictly less than log 2√

5
.

This implies by Proposition 1.1 that

∃ (p, q) ∈ Z2 \ {0} such that d(h(p, q), g(f)) = log
2|f(p, q)|√

disc(f)
< log

2√
5
.

Finally, we conclude that

inf
(p,q)∈Z2\{(0,0)}

|f(p, q)|√
disc(f)

<
1√
5
.
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