Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Markov's Problem from a Hyperbolic Geometry point of view

Martin Wohlfender

Quadratic forms, Markov numbers and Diophantine approximation

Supervisor: Dr. Paloma Bengoechea (D-MATH, ETH Zurich)

Spring Semester 2020

Introduction

This paper covers most of the material of sections $10-13$ of [Spr17]. We start by assigning a geodesic to each indefinite binary quadratic form and establishing a result about the signed distance of a horocycle and a geodesic. Afterwards, we turn towards hyperbolic triangles whose vertices are ideal points and introduce the modular torus. After having established a connection between ideal triangulations of the modular torus and Markov triples, we present the solution and an application of a geometric optimization problem.

We refer to [Yan20] for the definitions of objects like isometries of the hyperbolic plane, hyperbolic distance or horocycles. A detailed discussion of the isometries of the hyperbolic plane and the hyperbolic distance can be found in [And05].

The majority of the figures of this paper have been created using GeoGebra (see[Arn]).
I would like to thank Dr. Paloma Bengoechea for supervising this paper and especially for her helpful explanations concerning the proof of Proposition 12.1 of [Spr17].

1 Geodesics and indefinite binary quadratic forms

Definition 1.1

We assign to every indefinite binary quadratic form $f(x, y)=a x^{2}+b x y+c y^{2}$ with a, b and $c \in \mathbb{R}$ the geodesic connecting the zeros of the polynomial $f(x, 1)=a x^{2}+b x+c$ and call this geodesic $g(f)$.
Remark - If $a \neq 0$, then $f(x, 1)$ has two distinct real roots $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ because $b^{2}-4 a c>0$ and $g(f)$ is a euclidean half circle with origin on the real axis.

- If $a=0$, then we consider $-\frac{c}{b}$ and ∞ as two roots of $f(x, 1)$ and $g(f)$ is a vertical euclidean line.

Example

Let $f(x, y)=x^{2}+4 x y+3 y^{2} . f$ is an indefinite quadratic form because disc $(f)=16-12=4>0$. The zeros of the polynomial $f(x, 1)=x^{2}+4 x+3$ are -3 and -1 . Therefore, $g(f)$ is the euclidean half circle with origin -2 connecting -3 and -1 .

Lemma 1.1

The map g that assigns to each indefinite binary quadratic form f the geodesic $g(f)$ is surjective and many-toone. It holds:

$$
g\left(f_{1}\right)=g\left(f_{2}\right) \Longleftrightarrow f_{1}=\alpha f_{2} \text { for some } \alpha \in \mathbb{R} \backslash\{0\} .
$$

Lemma 1.2
If $A=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G L_{2}(\mathbb{R})$ and $f(x, y)=a x^{2}+b x y+c y^{2}$ is an indefinite binary quadratic form, then

$$
g\left(f \circ A^{-1}\right)=M_{A}(g(f)),
$$

i.e. the geodesic assigned to the binary quadratic form

$$
\left(f \circ A^{-1}\right)(x, y)=f\left(\frac{\delta x-\beta y}{\alpha \delta-\beta \gamma}, \frac{-\gamma x+\alpha y}{\alpha \delta-\beta \gamma}\right)
$$

is the image of $g(f)$ under the isometry

$$
M_{A}(z)=\frac{\alpha z+\beta}{\gamma z+\delta}
$$

Proof. First, we determine the zeros of the polynomial $\left(f \circ A^{-1}\right)(x, 1)$.

$$
\begin{aligned}
\left(f \circ A^{-1}\right)(x, y) & =f\left(\frac{\delta x-\beta y}{\alpha \delta-\beta \gamma}, \frac{-\gamma x+\alpha y}{\alpha \delta-\beta \gamma}\right) \\
& =a\left(\frac{\delta x-\beta y}{\alpha \delta-\beta \gamma}\right)^{2}+b \frac{\delta x-\beta y}{\alpha \delta-\beta \gamma} \frac{-\gamma x+\alpha y}{\alpha \delta-\beta \gamma}+c\left(\frac{-\gamma x+\alpha y}{\alpha \delta-\beta \gamma}\right)^{2} \\
& =\frac{\left(a \delta^{2}-b \gamma \delta+c \gamma^{2}\right) x^{2}+(b \alpha \delta+b \beta \gamma-2 a \beta \delta-2 c \alpha \gamma) x y+\left(a \beta^{2}-b \alpha \beta+c \alpha^{2}\right) y^{2}}{(\alpha \delta-\beta \gamma)^{2}}
\end{aligned}
$$

This implies that the zeros of $\left(f \circ A^{-1}\right)(x, 1)$ are

$$
y_{1,2}=\frac{2 a \beta \delta+2 c \alpha \gamma-b \alpha \delta-b \beta \gamma \pm(\alpha \delta-\beta \gamma) \sqrt{b^{2}-4 a c}}{2\left(a \delta^{2}-b \gamma \delta+c \gamma^{2}\right)}
$$

Now, we calculate the image of the zeros

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

of $f(x, 1)$ under M_{A}.

$$
\begin{aligned}
M_{A}\left(x_{i}\right) & =\frac{\alpha x_{i}+\beta}{\gamma x_{i}+\delta} \\
& =\frac{(-1)^{i+1} \alpha \sqrt{b^{2}-4 a c}-b \alpha+2 a \beta}{(-1)^{i+1} \gamma \sqrt{b^{2}-4 a c}-b \gamma+2 a \delta} \\
& =\frac{2 a \beta \delta+2 c \alpha \gamma-b \alpha \delta-b \beta \gamma+(-1)^{i+1}(\alpha \delta-\beta \gamma) \sqrt{b^{2}-4 a c}}{2\left(a \delta^{2}-b \gamma \delta+c \gamma^{2}\right)} \\
& =y_{i} \quad \forall i \in\{1,2\} .
\end{aligned}
$$

Since the image of a geodesic under M_{A} is a geodesic, the result follows.

We refer to Definition 1.9 of [Yan20] for the definition of the signed distance between a geodesic and a horocycle.

Proposition 1.1

Let $f=a x^{2}+b x y+c y^{2}$ be an indefinite binary quadratic form and let $(p, q) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
The signed distance of the horocycle $h(p, q)$ and the geodesic $g(f)$ is

$$
\begin{equation*}
d(h(p, q), g(f))=\log \frac{2|f(p, q)|}{\sqrt{\operatorname{disc}(f)}} . \tag{1}
\end{equation*}
$$

Proof. First, we prove the result for some special cases. Afterwards we reduce the general case to these special cases. We will use this strategy to prove several other results.

1. If $q=0$ and $a=0$, i.e. $h(p, q)$ is the horocycle at ∞ at height p^{2} and $g(f)$ is a euclidean vertical line: Since $g(f)$ ends in the center of $h(p, q)$, we have:

$$
\log \frac{2|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}=\log (0)=d(h(p, q), g(f))=-\infty
$$

because $f(p, q)=q(b p+c q)=0$.
2. If $q=0$ and $a \neq 0$, i.e. $h(p, q)$ is the horocycle at ∞ at height p^{2} and $g(f)$ is a euclidean half circle with origin on the real axis:
We have:

$$
\delta:=\frac{1}{2}\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}-\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)=\frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{p^{2} \sqrt{\operatorname{disc}(f)}}{2|f(p, q)|}
$$

is half of the euclidean distance between the two zeros $x_{1,2}$ of $f(x, 1)$.
Since $d(h(p, q), g(f))$ is the distance of the point $\frac{x_{1}+x_{2}}{2}+\delta i$ to $h(p, q)$ taken positive if $p^{2} \geq \delta$ and taken negative if $p^{2}<\delta$ we get:

$$
d(h(p, q), g(f))=\log \frac{p^{2}}{\delta}=\log \frac{2|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}
$$

3. If $q \neq 0$, i.e. $h(p, q)$ is the horocycle at $\frac{p}{q}$ with euclidean diameter $\frac{1}{q^{2}}$:

Define $A=\left(\begin{array}{rr}p & \frac{1-p^{2}}{q} \\ -q & p\end{array}\right)$.
It holds:
(a) $\operatorname{det}(A)=1$
(b) $A\binom{p}{q}=\binom{1}{0}$

By the second special case, we get:

$$
\begin{aligned}
d(h(p, q), g(f)) & =d\left(M_{A}(h(p, q)), M_{A}(g(f))=d\left(h(1,0), g\left(f \circ A^{-1}\right)\right.\right. \\
& =\log \frac{2\left|\left(f \circ A^{-1}\right)(1,0)\right|}{\sqrt{\operatorname{disc}\left(f \circ A^{-1}\right)}}=\log \frac{2\left|a p^{2}+b p q+c q^{2}\right|}{\operatorname{disc}(f)} \\
& =\log \frac{2|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}
\end{aligned}
$$

Lemma 1.3

If $f(x, y)=x^{2}-x y-y^{2}$ and $(p, q) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ is such that $h(p, q)$ and $g(f)$ intersect, then the signed distance of $h(p, q)$ and $g(f)$ satisfies

$$
d(h(p, q), g(f))=\log \left(\frac{2}{\sqrt{5}}\right)
$$

Proof. Define $A=\left(\begin{array}{rr}p & \frac{1-p^{2}}{q} \\ -q & p\end{array}\right)$.
We have:

$$
z_{1,2}:=M_{A}\left(\frac{1 \pm \sqrt{5}}{2}\right)=\text { zeros of }\left(f \circ A^{-1}\right)(x, 1)=\frac{2\left(1-p^{2}\right) \frac{p}{q}+2 p q+2 p^{2}-1 \pm \sqrt{5}}{2\left(p^{2}-p q+q^{2}\right)}
$$

Furthermore:

- The image of $g(f)$ under M_{A} is the geodesic connecting z_{1} and z_{2}, i.e. the euclidean half circle with origin $m:=\frac{z_{1}+z_{2}}{2}$ and radius $r:=\frac{\left|z_{1}-z_{2}\right|}{2}$.
- The image of the horocycle $h(p, q)$ under M_{A} is the horocycle at ∞ at height 1 .

Since $g(f)$ and $h(p, q)$ intersect, $M_{A}(g(f))$ and $h(1,0)$ intersect as well.
Therefore:

$$
r=\frac{\sqrt{5}}{2\left|p^{2}-p q+q^{2}\right|} \geq 1
$$

which implies that

$$
\left|p^{2}-p q+q^{2}\right|=1
$$

We conclude:

$$
d(h(p, q), g(f))=d\left(h(1,0), M_{A}(g(f))\right)=-d(m+i, m+r i)=-\log (r)=\log \left(\frac{2}{\sqrt{5}}\right)
$$

Corollary 1.1

If \tilde{f} is an indefinite binary quadratic form with real coefficients that is equivalent to $f(x, y)=x^{2}-x y-y^{2}$ and $(p, q) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ is such that $h(p, q)$ and $g(\tilde{f})$ intersect, then the signed distance of $h(p, q)$ and $g(\tilde{f})$ satisfies

$$
d(h(p, q), g(\tilde{f}))=\log \left(\frac{2}{\sqrt{5}}\right)
$$

Proof. Let $a, b, c, d \in \mathbb{Z}$ be such that $\tilde{f}(a x+b y, c x+d y)=f(x, y)$ and $|a d-b c|=1$.
We have:

$$
f(x, y)=\left(\tilde{f} \circ A^{-1}\right)(x, y) \text { where } A=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) .
$$

Since $h(p, q)$ and $g(\tilde{f})$ intersect, $M_{A}\left(h(p, q)\right.$ and $M_{A}(g(\tilde{f}))$ intersect as well.
By Lemma 1.2 and Lemma 1.3 it follows:

$$
d(h(p, q), g(\tilde{f}))=d\left(M_{A}\left(h(p, q), M_{A}(g(\tilde{f}))\right)=d\left(M_{A}(h(p, q), g(f))=\log \left(\frac{2}{\sqrt{5}}\right)\right.\right.
$$

2 Decorated Ideal Triangles

Definition 2.1

An ideal triangle is a closed region in the hyperbolic plane that is bounded by three geodesics (called the sides) connecting three ideal points v_{1}, v_{2} and v_{3} (called the vertices). We denote it by $\mathcal{T}\left(v_{1}, v_{2}, v_{3}\right)$.
Example (Ideal triangles)

Lemma 2.1

For each ideal triangle $T=\mathcal{T}\left(v_{1}, v_{2}, v_{3}\right)$ there is a hyperbolic isometry M_{T} that maps T to $\mathcal{T}(0,1, \infty)$.
Proof. 1. If $v_{1}=\infty$: Define

$$
M_{T}(z)=\frac{v_{2}-v_{3}}{z-v_{3}}
$$

2. If $v_{2}=\infty$: Define

$$
M_{T}(z)=\frac{z-v_{1}}{z-v_{3}}
$$

3. If $v_{3}=\infty$: Define

$$
M_{T}(z)=\frac{z-v_{1}}{v_{2}-v_{1}}
$$

4. Otherwise: Define

$$
M_{T}(z)=\frac{\left(z-v_{1}\right)\left(v_{2}-v_{3}\right)}{\left(z-v_{3}\right)\left(v_{2}-v_{1}\right)}
$$

Corollary 2.1

For any two ideal triangles $T_{1}=\mathcal{T}\left(v_{1}, v_{2}, v_{3}\right)$ and $T_{2}=\mathcal{T}\left(w_{1}, w_{2}, w_{3}\right)$ there exists a hyperbolic isometry $M_{T_{1}, T_{2}}$ such that $M_{T_{1}, T_{2}}$ maps T_{1} to T_{2}.
Proof. Define

$$
M_{T_{1}, T_{2}}=\left(M_{T_{2}}\right)^{-1} \circ M_{T_{1}}
$$

Definition 2.2

A decorated ideal triangle is an ideal triangle together with a horocycle at each vertex.
Example (Decorated ideal triangles)

Definition 2.3 1. A decorated geodesic is a geodesic together with a horocycle at each end.
2. The truncated length α of a decorated geodesic is the signed distance of its two horocycles $h_{1}=h\left(p_{1}, q_{1}\right)$ and $h_{2}=h\left(p_{2}, q_{2}\right)$, i.e. $\alpha=2 \log \left|p_{1} q_{2}-p_{2} q_{1}\right|$ (see Definition 1.7 of [Yan20]).
3. The weight of a decorated geodesic is defined as $a=e^{\alpha / 2}$, where α is the truncated length of the decorated geodesic.

Remark (Notation)

We write the truncated lengths of the sides of a decorated triangle as a triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where α_{i} is the truncated length of the decorated geodesic consisting of the side of the decorated triangle connecting the vertices v_{j} and v_{k} together with the horocycles at the vertices v_{j} and $v_{k},\{j, k\}=\{1,2,3\} \backslash\{i\}$.
Similarly, we write $\left(a_{1}, a_{2}, a_{3}\right)$ for the weights of a decorated ideal triangle and use the same letters for describing the sides of a triangle and their weights.

Lemma 2.2
Any triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{R}^{3}$ determines a decorated triangle with truncated lengths $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ that is unique up to isometry.

Proof. First, we consider the decorated triangle with vertices 0 , 1 , and ∞ and horocycles $h_{1}=h(0, A), h_{2}=$ $h(B, B)$ and $h_{3}=h(C, 0)$, where

$$
A=\exp \left(\frac{\alpha_{2}+\alpha_{3}-\alpha_{1}}{4}\right), B=\exp \left(\frac{\alpha_{1}+\alpha_{3}-\alpha_{2}}{4}\right) \text { and } C=\exp \left(\frac{\alpha_{1}+\alpha_{2}-\alpha_{3}}{4}\right)
$$

Figure 1: Decorated ideal triangle
We have:

$$
\begin{aligned}
& d\left(h_{2}, h_{3}\right)=2 \log (B C)=2 \log \left(\exp \left(\frac{\alpha_{1}}{2}\right)\right)=\alpha_{1} \\
& d\left(h_{1}, h_{3}\right)=2 \log (A C)=2 \log \left(\exp \left(\frac{\alpha_{2}}{2}\right)\right)=\alpha_{2} \\
& d\left(h_{1}, h_{2}\right)=2 \log (A B)=2 \log \left(\exp \left(\frac{\alpha_{3}}{2}\right)\right)=\alpha_{3}
\end{aligned}
$$

Now, let us consider an arbitrary decorated ideal triangle with vertices v_{1}, v_{2} and v_{3} and horocycles $h_{1}=$ $h\left(p_{1}, q_{1}\right), h_{2}=h\left(p_{2}, q_{2}\right)$ and $h_{3}=h\left(p_{3}, q_{3}\right)$ whose truncated lengths are $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

Let M be the isometry we defined in Lemma 2.1 that maps the triangle $\mathcal{T}\left(v_{1}, v_{2}, v_{2}\right)$ to the triangle $\mathcal{T}(0,1, \infty)$.

If $v_{1}=\infty$, then $q_{1}=0, v_{2}=\frac{p_{2}}{q_{2}}, v_{3}=\frac{p_{3}}{q_{3}}$ and M is induced by the matrix

$$
A=\left(\begin{array}{cc}
0 & \frac{v_{2}-v_{3}}{\delta} \\
\frac{1}{\delta} & -\frac{v_{3}}{\delta}
\end{array}\right), \text { where } \delta=\sqrt{\left|v_{2}-v_{3}\right|}
$$

Hence, by Lemma 1.6 of [Yan20], M maps

- h_{1} to $h\left(0, \frac{p_{1}}{\delta}\right)$,
- h_{2} to $\left.h\left(\frac{q_{2}\left(v_{2}-v_{3}\right.}{\delta}\right), \frac{q_{2}\left(v_{2}-v_{3}\right)}{\delta}\right)$ and
- h_{3} to $h\left(\frac{p_{3}\left(v_{2}-v_{3}\right)}{\delta}, 0\right)$.

Since the truncated length of a decorated geodesic is invariant under hyperbolic isometries:

$$
\begin{aligned}
& \alpha_{1}=d\left(M\left(h_{2}\right), M\left(h_{3}\right)\right)=2 \log \frac{\left|p_{3} q_{2}\right|\left(v_{2}-v_{3}\right)^{2}}{\delta^{2}}=2 \log (B C) \\
& \alpha_{2}=d\left(M\left(h_{1}\right), M\left(h_{3}\right)\right)=2 \log \frac{\left|p_{1} p_{3}\left(v_{2}-v_{3}\right)\right|}{\delta^{2}}=2 \log (A C) \\
& \alpha_{3}=d\left(M\left(h_{1}\right), M\left(h_{2}\right)\right)=2 \log \frac{\left|p_{1} q_{2}\left(v_{2}-v_{3}\right)\right|}{\delta^{2}}=2 \log (A B)
\end{aligned}
$$

Therefore,

$$
\frac{p_{1}}{\delta} \in\{ \pm A\}, \frac{q_{2}\left(v_{2}-v_{3}\right)}{\delta} \in\{ \pm B\} \text { and } \frac{p_{3}\left(v_{2}-v_{3}\right)}{\delta} \in\{ \pm C\}
$$

which implies that

$$
M\left(h_{1}\right)=h(A, 0), M\left(h_{2}\right)=h(B, B) \text { and } M\left(h_{3}\right)=h(0, C)
$$

The cases $v_{2}=\infty, v_{3}=\infty$ and $v_{1}, v_{2}, v_{3} \in \mathbb{R}$ follow analogously.

Corollary 2.2

Any triple $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}_{>0}^{3}$ determines a decorated triangle with weights $\left(a_{1}, a_{2}, a_{3}\right)$ that is unique up to isometry.

Corollary 2.3

Each decorated ideal triangle that is part of the Farey tessellation together with the Ford circles is isometric to the decorated ideal triangle with vertices 0,1 and ∞ and horocycles $h_{1}=h(0,1), h_{2}=h(1,1)$ and $h_{3}=h(1,0)$.

Proof. The statement follows from the proof of Lemma 2.2 and the fact that each such decorated ideal triangle has truncated lengths $(0,0,0)$.

Definition 2.4

We consider a decorated ideal triangle. Its three horocycles intersect the triangle in three arcs. We denote the hyperbolic length of the intersection of the horocycle at vertex i with the triangle by c_{i} and refer to these lengths as horocyclic arc lengths.

Lemma 2.3

The truncated side lengths $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ of a decorated ideal triangle determine the horocyclic arc lengths $\left(c_{1}, c_{2}, c_{3}\right)$, and vice versa, via the relation

$$
c_{i}=\frac{a_{i}}{a_{j} a_{k}}=e^{\frac{1}{2}\left(-\alpha_{i}-\alpha_{j}+\alpha_{k}\right)}
$$

where (i, j, k) is a permutation of $(1,2,3)$.
Proof. We consider the decorated triangle with vertices 0,1 , and ∞ and horocycles $h_{1}=h(0, A), h_{2}=h(B, B)$ and $h_{3}=h(C, 0)$, where

$$
A=\exp \left(\frac{\alpha_{2}+\alpha_{3}-\alpha_{1}}{4}\right), B=\exp \left(\frac{\alpha_{1}+\alpha_{3}-\alpha_{2}}{4}\right) \text { and } C=\exp \left(\frac{\alpha_{1}+\alpha_{2}-\alpha_{3}}{4}\right)
$$

Recall that this decorated ideal triangle has truncated side lengths $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.
As all decorated ideal triangles with truncated lengths $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are isometric to the decorated ideal triangle we described above (see Lemma 2.2) and the length of a curve is invariant under isometries, it suffices to prove the result for this special case.

It holds:

$$
c_{3}=\int_{0}^{1} \frac{1}{C^{2}} d x=\frac{1}{C^{2}}=e^{\frac{1}{2}\left(-\alpha_{1}-\alpha_{2}+\alpha_{3}\right)}=\frac{a_{3}}{a_{1} a_{2}}
$$

By Lemma 1.6 of [Yan20], the isometry $M_{\mathcal{A}}$ induced by the matrix

$$
\mathcal{A}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

maps

- 0 to 1
- 1 to ∞
- ∞ to 0
- $h(0, A)$ to $h(A, A)$
- $h(B, B)$ to $h(B, 0)$
- $h(C, 0)$ to $h(0,-C)=h(0, C)$

Since isometries of the hyperbolic plane preserve the length of a curve, we get

$$
c_{2}=\int_{0}^{1} \frac{1}{B^{2}} d x=\frac{1}{B^{2}}=e^{\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}-\alpha_{3}\right)}=\frac{a_{2}}{a_{1} a_{3}} .
$$

One obtains

$$
c_{1}=e^{\frac{1}{2}\left(\alpha_{1}-\alpha_{2}-\alpha_{3}\right)}=\frac{a_{1}}{a_{2} a_{3}}
$$

by repeating the above argument with the isometry $M_{\mathcal{B}}$ induced by the matrix

$$
\mathcal{B}=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

Definition 2.5

A decorated ideal quadrilateral is defined analogously to a decorated ideal triangle.
A decorated ideal quadrilateral can be decomposed into two decorated ideal triangles in two ways:

Figure 2: Triangulated decorated ideal quadrilateral
Figure 3: Triangulated decorated ideal quadrilateral

Lemma 2.4 (Ptolemy relation)
The six weights a, b, c, d, e, f are related by the Ptolemy relation

$$
e f=a c+b d
$$

Proof. By Lemma 2.3 it holds:

$$
\frac{e}{c d}=\frac{a}{d f}+\frac{b}{c f}
$$

which implies the result.

3 Modular Torus

Definition 3.1

The modular group is the subgroup of Isom $^{+}(\mathbb{H})$ consisting of all elements of the form

$$
M(z)=\frac{a z+b}{c z+d}, \text { where } a, b, c, d \in \mathbb{Z} \text { and } a d-b c=1
$$

Definition 3.2

Let \mathcal{G} be the subgroup of the modular group generated by $\alpha(z)=\frac{z-1}{-z+2}$ and $\beta(z)=\frac{z+1}{z+2}$ and let \sim be the equivalence relation on H^{2} defined by

$$
x \sim y \Longleftrightarrow \exists g \in \mathcal{G} \text { such that } g(x)=y,
$$

i.e. $x \sim y \Longleftrightarrow x$ and y are on the same orbit of the group action

$$
\phi: \mathcal{G} \times H^{2} \rightarrow H^{2}, \quad\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), x\right) \mapsto \frac{a x+b}{c x+d}
$$

The quotient space $M=H^{2} / \sim$ is called the modular torus.
Next, we collect a few facts about the modular group, the group \mathcal{G} and the isometries of the modular torus. More detail and some proofs can be found in [Kon].

Lemma 3.1 1. The modular group is generated by the elements

$$
-\frac{1}{z} \text { and } z+1
$$

2. \mathcal{G} is the commutator subgroup of the modular group.
3. \mathcal{G} is a normal subgroup of the modular group with index six. The quotient group is the group of orientation preserving isometries of the modular torus.
4. The group of isometries of the modular torus is the quotient group of the subgroup of Isom($\mathbb{H})$ consisting of all elements of the form

$$
M(z)=\frac{a z+b}{c z+d}, \text { where } a, b, c, d \in \mathbb{Z} \text { and }|a d-b c|=1
$$

modulo \mathcal{G}, has 12 elements and is generated by the equivalence classes of the elements

$$
-\frac{1}{z}, z+1 \text { and }-\bar{z}
$$

Theorem 3.1

A fundamental domain of the modular torus is given by

$$
F:=\left\{z \in H^{2}:-1 \leq \operatorname{Re}(z) \leq 1\right\} \backslash\left\{z \in H^{2}:\left|z+\frac{1}{2}\right| \leq \frac{1}{2} \text { or }\left|z-\frac{1}{2}\right| \leq \frac{1}{2}\right\}
$$

Proof. The result is a consequence of Lemma 3.1 and Lemma 5 of [HT19].

Remark 1. It holds:

$$
\alpha(1)=0, \quad \beta(-1)=0, \quad \alpha(\infty)=-1 \text { and } \beta(\infty)=1
$$

Therefore, the modular torus is a torus with one point $(-1 \sim 0 \sim 1 \sim \infty)$ removed, i.e. a once punctured hyperbolic torus.
2. By decomposing the ideal quadrilateral with vertices $-1,0,1$ and ∞ into two ideal triangles we obtain an ideal triangulation of the modular torus.

Definition 3.3

The modular torus together with a choice of horocycle at the cusp is called decorated modular torus.
The decorated modular torus can be viewed as two congruent decorated ideal triangles that are glued together along their edges in a way that the horocycles fit together. In the following, we denote the weights of these two ideal decorated triangles by (a, b, c).

Example (Decorated Modular Tori)

Figure 4: Decorated modular torus with ideal triangulation

Figure 5: Decorated modular torus with ideal triangulation

Lemma 3.2

The total length of the horocycle of a decorated modular torus is given by

$$
l=2\left(\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) .
$$

Proof. Due to Lemma 2.3, the total length of the horocyclic arcs of a decorated ideal triangle with weights (a, b, c) is given by

$$
\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b} .
$$

Hence,

$$
l=2\left(\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) .
$$

Remark

If $l=6$, then the weights (a, b, c) satisfy Markov's equation. Therefore, we consider from now on the decorated modular torus whose horocycle has total length 6 . One obtains it by gluing two decorated ideal triangles with weights $(1,1,1)$.

Lemma 3.3

If the triangulation with weights $(1,1,1)$ and the decoration of the modular torus together with the horocycle of length 6 is lifted to the hyperbolic plane, then one obtains the Farey tessellation with Ford circles.

Proof. We refer to section 3 of [Pfe15].
This means that the collection of images of the fundamental domain of the decorated modular torus with ideal triangulation as in Figure 5 under the isometries of the hyperbolic plane that are contained in \mathcal{G}, is the Farey tessellation with Ford circles.

Remark

Recall from [Bol20] the definition of Markov triples and neighbouring Markov triples. There are three involutions σ_{k} on the set of Markov triples that map any Markov triple (a, b, c) to its neighbours:

- $\sigma_{1}(a, b, c)=\left(\frac{b^{2}+c^{2}}{a}, b, c\right)$
- $\sigma_{2}(a, b, c)=\left(a, \frac{a^{2}+c^{2}}{b}, c\right)$
- $\sigma_{3}(a, b, c)=\left(a, b, \frac{a^{2}+b^{2}}{c}\right)$

The following proposition is the main result of this section and establishes a connection between Markov triples and ideal triangulations of the decorated modular torus.

Proposition 3.1 (Markov triples and ideal triangulations) 1. A triple $\tau=(a, b, c)$ of positive integers is a Markov triple if and only if there is an ideal triangulation of the decorated modular torus whose three edges have weights a, b and c. This triangulation is unique up to the 12 -fold symmetry of the modular torus.
2. If T is an ideal triangulation of the decorated modular torus with edge weights $\tau=(a, b, c)$, and if T^{\prime} is an ideal triangulation obtained from T by performing a single edge flip, then the edge weights of T^{\prime} are $\tau^{\prime}=\sigma_{k} \tau$, with $k \in\{1,2,3\}$ depending on which edge was flipped.

Proof. We only present one idea of the proof of the statement. More detail can be found in section 12 of [Spr17].
Let (a, b, c) be a Markov triple.
To obtain an ideal triangulation of the decorated modular torus with weights (a, b, c), one has to follow the Markov tree leading from $(1,1,1)$ to (a, b, c) and perform the corresponding edge flips on the projected Farey tessellation.

As an example, we execute three edge flips to get an ideal triangulation of the decorated modular torus with weights $(2,5,29)$.

The edge a forms a diagonal of the ideal quadrilateral with vertices $-1,0,1$ and ∞ which is a fundamental domain of the modular torus by Theorem 3.1.

Figure 6: Flip of edge a
We get by the Ptolemy relation:

$$
\left(a^{\prime}, b, c\right)=\left(\frac{b^{2}+c^{2}}{a}, b, c\right)=\sigma_{1}(a, b, c) .
$$

Since $a=b=c=1$, we get an ideal triangulation of the decorated modular torus with weights $(2,1,1)$.
Next, we want to flip edge b. Therefore, we look for an ideal quadrilateral that is a fundamental domain of the modular torus and has the edge b as a diagonal.

The isometry of the hyperbolic plane

$$
\beta^{-1}(z)=\frac{2 z-1}{-z+1}
$$

sends the ideal quadrilateral with vertices $-1,0,1$ and ∞ to the ideal quadrilateral with vertices $-\frac{3}{2},-1, \infty$ and -2 . Hence, the ideal quadrilateral with vertices $-\frac{3}{2},-1,1$ and ∞ is a fundamental domain of the modular torus.

Figure 7: Looking for a new ideal quadrilateral

Figure 8: Flip of edge b
We get by the Ptolemy relation:

$$
\left(a, b^{\prime}, c\right)=\left(a, \frac{a^{2}+c^{2}}{b}, c\right)=\sigma_{2}(a, b, c)
$$

Since $a=2$ and $b=c=1$, we get an ideal triangulation of the decorated modular torus with weights $(2,5,1)$.
Finally, we want to flip edge c. In order to do that, we proceed as before.
The isometry of the hyperbolic plane

$$
\left(\beta^{-1} \circ \alpha\right)(z)=\frac{3 z-4}{-2 z+3}
$$

sends the ideal quadrilateral with vertices $-\frac{3}{2},-1,1$ and ∞ to the ideal quadrilateral with vertices $-\frac{17}{12},-\frac{7}{5},-1$ and $-\frac{3}{2}$. Hence, the ideal quadrilateral with vertices $-\frac{3}{2},-\frac{17}{12},-1$ and 1 is a fundamental domain of the modular torus.

Figure 9: Looking for a new decorated ideal quadrilateral

Figure 10: Magnification of the previous figure

Figure 11: Flip of edge c
We get by the Ptolemy relation:

$$
\left(a, b, c^{\prime}\right)=\left(a, b, \frac{a^{2}+b^{2}}{c}\right)=\sigma_{3}(a, b, c)
$$

Since $a=2, b=5$ and $c=1$, we get an ideal triangulation of the decorated modular torus with weights $(2,5,29)$.

As a final remark concerning this proof, we examine whether it makes a difference to perform the flip at edge b, which we did above, at the geodesic connecting -1 and ∞ or at the geodesic connecting 0 and 1 .

The isometry of the hyperbolic plane

$$
\beta(z)=\frac{z+1}{z+2}
$$

sends the ideal quadrilateral with vertices $-1,0,1$ and ∞ to the ideal quadrilateral with vertices $0, \frac{1}{2}, \frac{2}{3}$ and 1 . Hence, the ideal quadrilateral with vertices $-1,0, \frac{2}{3}$ and 1 is a fundamental domain of the modular torus.

Figure 12: Flip of edge b (second version)
As above, we get an ideal triangulation of the decorated modular torus with weights $(2,5,1)$.
The isometry of the modular torus that is induced by the isometry of the hyperbolic plane

$$
M(z)=\frac{-1}{z}
$$

sends the ideal quadrilateral with vertices $-\frac{3}{2},-1,1$ and ∞ to the ideal vertices quadrilateral with vertices $\frac{2}{3}$, $1,-1$ and 0 .

Hence, one does not necessarily get the same ideal triangulation of the modular torus if one performs a flip at different representatives of an edge, but the two ideal triangulations are related by an isometry of the modular torus.

4 Geodesics crossing a decorated ideal triangle

In this section we consider the following geometric optimization problem:
Given a decorated ideal triangle, find among all geodesics intersecting the sides a_{1} and a_{2}, a geodesic that maximizes the minimum of the signed distances to the three horocycles at the vertices.

Definition 4.1 1. A geodesic bisects a side of a decorated ideal triangle if it intersects the side in the point at equal distance to the two horocycles at the ends of the side.
2. The perpendicular bisector of a side of a decorated ideal triangle is the geodesic that intersects the side in the point at equal distance to the two horocycles at the ends of the side at right angles.

Lemma 4.1

A geodesic that bisects two sides of a decorated ideal triangle has equal signed distance to all three horocycles of the decorated ideal triangle.

Proof. By Lemma 2.2, it suffices to consider the ideal triangle with vertices $v_{1}=0, v_{2}=1$ and $v_{3}=\infty$ and horocycles $h_{1}=h(0, A), h_{2}=h(B, B)$ and $h_{3}=h(C, 0)$, where $A, B, C \in \mathbb{R}_{>0}$, and the geodesic g that bisects the sides a_{1} and a_{2}.

Let $Q_{1}=1+\gamma_{1} i$ be the point where g and a_{1} intersect and let $Q_{2}=\gamma_{2} i$ be the point where g and a_{2} intersect.
It holds:

$$
\log \frac{C^{2}}{\gamma_{2}}=\log A^{2} \gamma_{2} \text { and } \log \frac{C^{2}}{\gamma_{1}}=\log B^{2} \gamma_{1}
$$

Therefore:

$$
\begin{equation*}
A^{2} \gamma_{2}^{2}=C^{2}=B^{2} \gamma_{1}^{2} \tag{2}
\end{equation*}
$$

Furthermore, Q_{1} and Q_{2} lie on the euclidean half circle with center

$$
m=\frac{1}{2}\left(\gamma_{1}^{2}-\gamma_{2}^{2}+1\right)
$$

and radius

$$
r=\sqrt{\frac{1}{4}\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)^{2}+\frac{1}{2}\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)+\frac{1}{4}}
$$

This implies that

$$
\begin{equation*}
\gamma_{1}^{2}+(m-1)^{2}=r^{2}=\gamma_{2}^{2}+m^{2} \tag{3}
\end{equation*}
$$

We define $f(x, y)=x^{2}-2 m x y+\left(m^{2}-r^{2}\right) y^{2}$.
It holds:

- $\operatorname{disc}(f)=4 r^{2}$
- $f(0, A)=A^{2}\left(m^{2}-r^{2}\right)=A^{2} \gamma_{2}^{2}$
- $f(B, B)=B^{2}-2 m B^{2}+\left(m^{2}-r^{2}\right) B^{2}=-\left(r^{2}-(1-m)^{2}\right) B^{2}=-\gamma_{1}^{2} B^{2}$

Therefore:

$$
\begin{aligned}
d\left(h_{1}, g\right) & =d(h(0, A), g(f)) & d\left(h_{2}, g\right) & =d(h(B, B), g(f)) \\
& =\log \frac{A^{2} \gamma_{2}^{2}}{r} & & =\log \frac{B^{2} \gamma_{1}^{2}}{r} \\
& =\log \frac{C^{2}}{r}+\log \frac{A^{2} \gamma_{2}^{2}}{C^{2}} & & =\log \frac{C^{2}}{r}+\log \frac{B^{2} \gamma_{1}^{2}}{C^{2}} \\
& =\log \frac{C^{2}}{r}+\log A^{2} \gamma_{2}-\log \frac{C^{2}}{\gamma_{2}} & & =\log \frac{C^{2}}{r}+\log B^{2} \gamma_{1}-\log \frac{C^{2}}{\gamma_{1}} \\
& =\log \frac{C^{2}}{r}=d\left(h_{3}, g\right) & & =\log \frac{C^{2}}{r}=d\left(h_{3}, g\right)
\end{aligned}
$$

Corollary 4.1

A geodesic that bisects two sides of a decorated ideal triangle that is part of the Farey tessellation together with the Ford circles has signed distance

$$
\log \frac{2}{\sqrt{5}}
$$

to all three horocycles.
Proof. This is a consequence of Corollary 2.3 and the proof of Lemma 4.1.

Proposition 4.1

We consider a decorated ideal triangle with weights $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$.

1. If

$$
\begin{equation*}
a_{1}^{2} \leq a_{2}^{2}+a_{3}^{2} \text { and } a_{2}^{2} \leq a_{1}^{2}+a_{3}^{2} \tag{4}
\end{equation*}
$$

then the geodesic g bisecting the sides a_{1} and a_{2} is the unique solution of the above optimization problem.
2. If, for $(j, k) \in\{(1,2),(2,1)\}$,

$$
\begin{equation*}
a_{j}^{2} \geq a_{k}^{2}+a_{3}^{2} \tag{5}
\end{equation*}
$$

then the perpendicular bisector \tilde{g} of the side a_{k} is the unique solution of the above optimization problem. In this case, the minimal distance is attained for h_{j} and h_{3},

$$
d\left(h_{j}, \tilde{g}\right)=d\left(h_{3}, \tilde{g}\right)=\frac{\alpha_{k}}{2} \leq d\left(h_{k}, \tilde{g}\right) .
$$

Proof. By Lemma 2.2, it suffices to consider the ideal triangle with vertices $v_{1}=0, v_{2}=1$ and $v_{3}=\infty$ and horocycles $h_{1}=h(0, A), h_{2}=h(B, B)$ and $h_{3}=h(C, 0)$, where $A, B, C \in \mathbb{R}_{>0}$.

For $j \in\{1,2,3\}$ we define P_{j} to be the point on g that is closest to h_{j} and denote the geodesic connecting P_{j} and v_{j} with g_{j}. If g_{j} is a euclidean half circle with center on the real axis, we denote its center by m_{j} and its radius by r_{j}. If g_{j} is a euclidean vertical line we define m_{j} to be the point where g_{j} hits the real axis and set $r_{j}=0$.

It holds:

- $r_{1}=\left|m_{1}\right|$ and $\left(m-m_{1}\right)^{2}=r_{1}^{2}+r^{2}$ because g and g_{1} intersect at a right angle at P_{1}.
- $r_{2}=\left|m_{2}-1\right|$ and $\left(m-m_{2}\right)^{2}=r_{2}^{2}+r^{2}$ because g and g_{2} intersect at a right angle at P_{2}.
- $r_{3}=0$ and $m_{3}=m$.

Therefore:

$$
\begin{equation*}
m_{1}=\frac{m^{2}-r^{2}}{2 m} \quad \text { and } \quad m_{2}=\frac{m^{2}-r^{2}-1}{2(m-1)} \tag{6}
\end{equation*}
$$

We distinguish between the following four cases:

1. P_{3} lies strictly between P_{1} and P_{2} :

In this case, g is the unique solution of the optimization problem. By Lemma 4.1, g has equal distance to all three horocycles. In addition, any other geodesic crossing the sides a_{1} and a_{2} also crosses the ray from P_{j} to v_{j} for at least one $j \in\{1,2,3\}$. Therefore, it is closer to at least one of the horocycles.

Figure 13: P_{3} lies strictly between P_{1} and P_{2}
2. P_{1} lies strictly between P_{3} and P_{2} :

In this case, the perpendicular bisector of the side a_{2} is the unique solution of the optimization problem. We denote it by b_{2}. The signed distance of b_{2} to the horocycles h_{1} and h_{3} is half the truncated length of side a_{2}. The signed distance of b_{2} and the h_{2} is larger. Any other geodesic crossing a_{2} is either closer to h_{1} or to h_{3}.

Figure 14: P_{1} lies strictly between P_{3} and P_{2}
3. P_{2} lies strictly between P_{1} and P_{3} :

In this case, the perpendicular bisector of the side a_{1} is the unique solution of the optimization problem. We use the same arguments as in the second case.
4. $P_{3}=P_{1}$ or $P_{3}=P_{2}$:

If $P_{3}=P_{1}$, then g is simultaneously the geodesic connecting Q_{1} and Q_{2} and the perpendicular bisector of the side a_{2}.

If $P_{3}=P_{2}$, then g is simultaneously the geodesic connecting Q_{1} and Q_{2} and the perpendicular bisector of the side a_{1}.

It remains to show that the order of the points P_{j} on g depends on whether the inequalities (4) or (5) are satisfied.
We define

- s_{1} to be the horocyclic arc of h_{1} between R_{1} and R_{2} and
- s_{2} to be the horocyclic arc of h_{2} between S_{2} and S_{3}.
- t_{1} to be the horocyclic arc of h_{3} between T_{1} and T_{2},
- t_{2} to be the horocyclic arc of h_{3} between T_{2} and T_{3},
- u_{1} to be the horocyclic arc of h_{1} between R_{1} and R_{3} and
- u_{2} to be the horocyclic arc of h_{2} between S_{1} and S_{3}.

We denote the absolute value of the hyperbolic length of the horocyclic arcs we just defined by | horocyclic arc \mid.
claim: $\left|s_{1}\right|=\left|t_{1}\right|,\left|s_{2}\right|=\left|t_{2}\right|$ and $\left|u_{1}\right|=\left|u_{2}\right|$
$\left|t_{1}\right|$ and $\left|t_{2}\right|$ can be determined as follows:

$$
\left|t_{1}\right|=\left|\int_{0}^{m} \frac{1}{C^{2}} d t\right|=\frac{|m|}{C^{2}} \quad \text { and } \quad\left|t_{2}\right|=\left|\int_{m}^{1} \frac{1}{C^{2}} d t\right|=\frac{|1-m|}{C^{2}}
$$

The isometry $\frac{1}{\bar{z}}$ maps

- the horocycle h_{1} to the horocycle $h(A, 0)$,
- the geodesic g_{1} to the geodesic connecting $\frac{1}{2 m_{1}}$ and ∞ and
- the side a_{3} to the geodesic connecting 1 and ∞.

Therefore, R_{1} is sent to $\frac{1}{2 m_{1}}+A^{2} i, R_{2}$ is sent to $A^{2} i$ and R_{3} is sent to $1+A^{2} i$.
It follows by (2),(3) and (6):

$$
\begin{aligned}
& \left|s_{1}\right|=\left|\int_{0}^{\frac{1}{2 m_{1}}} \frac{1}{A^{2}} d t\right|=\frac{1}{2 A^{2}\left|m_{1}\right|} \quad \text { and } \quad\left|u_{1}\right|=\left|\int_{\frac{1}{2 m_{1}}}^{1} \frac{1}{A^{2}} d t\right|=\frac{\left|2 m_{1}-1\right|}{2 A^{2}\left|m_{1}\right|} \\
& \quad \Longrightarrow\left|s_{1}\right|=\frac{|m|}{A^{2}\left|m^{2}-r^{2}\right|}=\frac{|m|}{A^{2} \gamma_{2}^{2}}=\frac{|m|}{C^{2}}=\left|t_{1}\right|
\end{aligned}
$$

The isometry $\frac{1}{\bar{z}-1}$ maps

- the horocycle h_{2} to the horocycle $h(B, 0)$,
- the geodesic g_{2} to the geodesic connecting $\frac{1}{2 m_{2}-2}$ and ∞ and
- the side a_{3} to the geodesic connecting -1 and ∞.

Therefore, S_{1} is sent to $-1+B^{2} i, S_{2}$ is sent to $B^{2} i$ and S_{3} is sent to $\frac{1}{2 m_{2}-2}+B^{2} i$.
It follows by (2),(3) and (6):

$$
\begin{aligned}
\left|s_{2}\right| & =\left|\int_{0}^{\frac{1}{2 m_{2}-2}} \frac{1}{B^{2}} d t\right|=\frac{1}{2 B^{2}\left|m_{2}-1\right|} \quad \text { and } \quad\left|u_{2}\right|=\left|\int_{-1}^{\frac{1}{2 m_{2}-2}} \frac{1}{B^{2}} d t\right|=\frac{\left|2 m_{2}-1\right|}{2 B^{2}\left|m_{2}-1\right|} \\
& \Longrightarrow\left|s_{2}\right|=\frac{|m-1|}{B^{2}\left|(m-1)^{2}-r^{2}\right|}=\frac{|m-1|}{B^{2} \gamma_{1}^{2}}=\frac{|m-1|}{C^{2}}=\left|t_{2}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|u_{1}\right| & =\frac{\left|r^{2}-m^{2}+m\right|}{A^{2}\left|r^{2}-m^{2}\right|}=\frac{\left|\gamma_{2}^{2}+m\right|}{A^{2} \gamma_{2}^{2}}=\frac{\left|\gamma_{1}^{2}+(m-1)^{2}-m^{2}+m\right|}{B^{2} \gamma_{1}^{2}} \\
& =\frac{\left|\gamma_{1}^{2}+1-m\right|}{B^{2} \gamma_{1}^{2}}=\frac{\left|r^{2}-m^{2}+m\right|}{B^{2}\left|r^{2}-(m-1)^{2}\right|}=\left|u_{2}\right| .
\end{aligned}
$$

If P_{3} lies strictly between P_{1} and P_{2}, then it hods:

1. $c_{1}=\left|u_{1}\right|-\left|s_{1}\right|$
2. $c_{2}=\left|u_{2}\right|-\left|s_{2}\right|$
3. $c_{3}=\left|t_{1}\right|+\left|t_{2}\right|$

This implies that

$$
2\left|t_{1}\right|=-c_{1}+c_{2}+c_{3}=-\frac{a_{1}}{a_{2} a_{3}}+\frac{a_{2}}{a_{1} a_{3}}+\frac{a_{3}}{a_{1} a_{2}}=\frac{-a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{a_{1} a_{2} a_{3}}
$$

and

$$
2\left|t_{2}\right|=c_{1}-c_{2}+c_{3}=\frac{a_{1}}{a_{2} a_{3}}-\frac{a_{2}}{a_{1} a_{3}}+\frac{a_{3}}{a_{1} a_{2}}=\frac{a_{1}^{2}-a_{2}^{2}+a_{3}^{2}}{a_{1} a_{2} a_{3}} .
$$

P_{3} lies strictly between P_{1} and P_{2} if and only if $\left|t_{1}\right|>0$ and $\left|t_{2}\right|>0$.
Therefore, P_{3} lies strictly between P_{1} and P_{2} if and only if the inequalities $a_{2}^{2}+a_{3}^{2}>a_{1}^{2}$ and $a_{1}^{2}+a_{3}^{2}>a_{2}^{2}$ are satisfied.

The other cases are treated similarly.

The last major result of this paper presents an application of Proposition 4.1 and relates hyperbolic geometry with the theory of indefinite binary quadratic forms.

For the proof of our last theorem we need the following lemma:

Lemma 4.2

If a geodesic $g=g(f)$, where f is an indefinite binary quadratic form, bisects two sides of a decorated ideal triangle that is part of the Farey tessellation together with the Ford circles, then f is equivalent to an indefinite binary quadratic form of the type

$$
\alpha x^{2}-\alpha x y-\alpha y^{2}, \text { where } \alpha \in \mathbb{R} \backslash\{0\} .
$$

Proof. By Corollary 2.3, there is an isometry M that maps g to $g(\tilde{f})$, where

$$
\tilde{f}(x, y)=x^{2}-x y-y^{2}
$$

because $g(\tilde{f})$ bisects the sides a_{1} and a_{2} of the decorated ideal triangle with vertices 0,1 and ∞ and horocycles $h_{1}=h(0,1), h_{2}=h(1,1)$ and $h_{3}=h(1,0)$.

Let

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in G L_{2}(\mathbb{R})
$$

be such that $|\operatorname{det}(A)|=1$ and $M_{A}=M$.
Therefore,

$$
M_{A}(g(f))=g(\tilde{f})
$$

which implies by Lemma 1.2 that

$$
g(f)=M_{A^{-1}}(g(\tilde{f}))=g(\tilde{f} \circ A)
$$

Hence, we get by Lemma 1.1 that

$$
f=\alpha(\tilde{f} \circ A)=(\alpha \tilde{f}) \circ A, \text { for some } \alpha \in \mathbb{R} \backslash\{0\}
$$

Theorem 4.1 (Korkin and Zolotarev)
Let $f(x, y)=a x^{2}+b x y+c y^{2}$ be an indefinite binary quadratic form with real coefficients.

1. If f is equivalent to an indefinite binary quadratic form of the type

$$
\alpha x^{2}-\alpha x y-\alpha y^{2}, \text { where } \alpha \in \mathbb{R} \backslash\{0\},
$$

then

$$
\inf _{(p, q) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}=\frac{1}{\sqrt{5}}
$$

2. Otherwise,

$$
\inf _{(p, q) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}<\frac{1}{\sqrt{5}}
$$

Proof. 1. There is a matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

such that $|\operatorname{det}(A)|=1$ and

$$
f(x, y)=\alpha\left(a_{11} x+a_{12} y\right)^{2}-\alpha\left(a_{11} x+a_{12} y\right)\left(a_{21} x+a_{22} y\right)-\alpha\left(a_{21} x+a_{22} y\right)^{2} .
$$

It holds:

$$
\frac{|f(x, y)|}{\sqrt{\operatorname{disc}(f)}}=\frac{|\alpha||(\tilde{f} \circ A)(x, y)|}{\sqrt{\alpha^{2} \operatorname{disc}(\tilde{f} \circ A)}} \text { where } \tilde{f}(x, y)=x^{2}-x y-y^{2} .
$$

Hence, it suffices to prove the result for the case that f is equivalent to $x^{2}-x y-y^{2}$.

We conclude the proof of the first part of the theorem by the fact that for every geodesic g there exists a Ford circle h such that g and h intersect, by Corollary 1.1 and by Proposition 1.1.
2. We choose an arbitrary decorated ideal triangle that is part of the Farey tessellation together with the Ford circles such that $g(f)$ intersects two of its sides and denote it by \mathcal{T}.
The weights of \mathcal{T} are given by $(1,1,1)$.

By Lemma 4.2, f does not bisect two sides of \mathcal{T}. Hence, by the first part of Proposition 4.1, the minimum of the signed distances of $g(f)$ and the horocycles of \mathcal{T} is strictly smaller than the minimum of the signed distances of the geodesic bisecting the sides a_{1} and a_{2} of \mathcal{T} and the horocycles of \mathcal{T}.

Therefore, Corollary 4.1 implies that the minimum of the signed distances of $g(f)$ and the horocycles of \mathcal{T} is strictly less than $\log \frac{2}{\sqrt{5}}$.

This implies by Proposition 1.1 that

$$
\exists(p, q) \in \mathbb{Z}^{2} \backslash\{0\} \text { such that } d(h(p, q), g(f))=\log \frac{2|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}<\log \frac{2}{\sqrt{5}}
$$

Finally, we conclude that

$$
\inf _{(p, q) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{|f(p, q)|}{\sqrt{\operatorname{disc}(f)}}<\frac{1}{\sqrt{5}} .
$$

Bibliography

[And05] James W. Anderson. Hyperbolic Geometry. Springer Undergraduate Mathematics Series. Springer, 2005.
[Arn] Jordi Arnau. Poincaré's Half-Plane model, basic workspace. URL: https://www. geogebra.org/m/ dqc3uKhY\#material/DBXvbruR (Accessed: 13 May 2020).
[Bol20] Tiziana Bolsinger. Markov's Theorem on quadratic forms. 2020. URL: https://metaphor.ethz.ch/ x/2020/fs/401-3110-20L/ex/Lecture_Tiziana.pdf (Accessed: 7 May 2020).
[HT19] Johannes Hruza and Manuel Trachsler. The modular group and the fundamental domain. 2019. URL: https://metaphor.ethz.ch/x/2019/fs/401-4110-19L/sc/modulargroup.pdf (Accessed: 7 May 2020).
[Kon] Keith Konrad. $S L_{2}(\mathbb{Z})$. URL: https://kconrad.math. uconn.edu/blurbs/grouptheory/SL (2, Z) .pdf (Accessed: 7 May 2020).
[Pfe15] Mareike Pfeil. The Farey Tessellation. 2015. URL: https://www.mathi.uni-heidelberg.de/~lee/ Mareike02.pdf (Accessed: 7 May 2020).
[Spr17] Boris Springborn. "The hyperbolic geometry of Markov's theorem on Diophantine approximation and quadratic forms". In: L'Enseignement Mathématique 63 (2017), pp. 333-373.
[Yan20] Xiao Yang. Hyperbolic geometry on Diophantine approximation. 2020. URL: https://metaphor . ethz.ch/x/2020/fs/401-3110-20L/ex/Lecture_Xiao.pdf (Accessed: 7 May 2020).

